
Middleware Architecture Report:

“A Middleware Framework for Delivering Business Solutions”

Version 1.0, May 2001

Prepared for:
The Council on Technology Services
Commonwealth of Virginia

By:
The COTS Enterprise Architecture Workgroup,
Middleware Domain Team

Middleware Architecture Version 1.0 Revision 5-18-2001

 2

Middleware Domain Team Members
Ted McCormack, CoChair Commission on Local Government
Troy DeLung, CoChair Department of Environmental Quality
Matt Blaes VA Geographic Information Network
Will Burke Department of Motor Vehicles
Bob Green Department of Information Technology
Jim Jokl University of VA
Dick Jones VA Department of Transportation
Paul Hendricks Department of Motor Vehicles
Paul Bucher VA Department of Transportation, Consultant (Domain

Staff)
Diane Wresinski Department of Technology Planning (Domain Staff)
Paul Lubic Department of Technology Planning (Enterprise

Architecture Manager)
Brian Mason Department of Technology Planning (Enterprise

Architecture Consultant)

COTS Enterprise Architecture Workgroup

David Molchany, Co-Chair Fairfax County, Local Government Representation
Murali Rao, Co-Chair Department of Transportation, Secretariat of

Transportation Representation
Tim Bass Virginia Retirement System, Independent Agency

Representative
Bethann Canada Department of Education, Secretariat of Education

Representative
Troy DeLung, Department of Environmental Quality, Secretariat of

Natural Resources Representative
Linda Foster Department of Taxation, Secretariat of Finance

Representative
Bob Haugh Department of Corrections, Secretariat of Public

Safety & Large Agency Representative
Randy Horton Department of Rehabilitative Services, Secretariat

of Health and Human Services Representative
James Jokl University of Virginia, Higher Education

Representative (UVA)
Ted McCormack Commission on Local Government, Secretariat of

Administration & Small Agency Representative
Bill Mize Department of Information Technology, Secretariat

of Technology Representative
Bob Pontius Employment Commission, Secretariat of

Commerce and Trade Representative

Middleware Architecture Version 1.0 Revision 5-18-2001

 3

Table of Contents
I. Executive Summary of Middleware Architecture ... 5
II. Mission... 7
III. Introduction and Background .. 8
IV. Methodology... 9

A. Middleware Definition... 9
B. Benefits... 9
C. Types of Middleware.. 10

V. Principles.. 12
VI. Middleware Functions .. 13

A. Database Middleware... 13
A.1 Directory Services .. 13
A.2 Database Metadata Services... 14
A.3 Database Access Services .. 15
A.4 Database Middleware Guidelines .. 16

B. Message Middleware.. 17
B.1 Message Formats .. 17
B.2 Message Transfers .. 19
B.3 Message Oriented Middleware... 20
B.4 Messaging Middleware Standards ... 21
B.5 Message Middleware Guidelines ... 22

C. Transaction Processing Monitor Middleware and Services 24
C.1 Two-Phase Commits .. 24
C.2 Failure/recovery.. 24
C.3 Synchronization.. 25
C.4 Scheduling .. 25
C.5 Repeat attempts .. 25
C.6 Message queue management .. 25
C.7 Business-rule-based transaction workflow services... 25
C.8 Load balancing services ... 25
C.9 Transaction Processing Middleware Guidelines .. 26

D. Application Integration Middleware Servers and Services...................................... 26
D.1 Methods to Integrate Applications ... 26
D.2 Application Integration Management Services .. 28
D.3 Application Integration Middleware Examples ... 29
D.4 Application Integration Middleware Guidelines.. 31

E. Super-Service Middleware Servers and Services ... 32
E.1 Value Added Services .. 32
E.2 Super-Service Middleware Servers and Services Guidelines 33

VII. E-Government Examples... 34
VIII. Policies, Standards and Best Practices ... 35

A. Policies ... 35
B. Recommended Policies .. 35
C. Standards .. 36
D. Recommended Standards... 36

Middleware Architecture Version 1.0 Revision 5-18-2001

 4

E. Best Practices.. 36
Glossary .. 38
Appendices.. 46

Appendix A. History of the Evolution of Separate Middleware Services 46
Appendix B. What Communication Services Are Middleware Domain Service: The
OSI and TCP/IP Models ... 48
Appendix C. Domain Team Working Documents.. 51
Appendix D. Reference and Links .. 57
Appendix E: Quick Reference .. 59

Tables and Figures
Figure 1: Example Middleware Tools and Services ... 6
Figure 2: Development of the EWTA... 8
Table 1: Enterprise-Wide Technical Architecture (EWTA) Domains 8
Table 2: Database Connectivity Technology Ratings... 16
Table 3: MIME Examples... 22
Table 4: Message-oriented Middleware Technology Ratings .. 23
Table 5: Transaction Processing Monitor Middleware... 26
Table 6: Middleware Application Integration Services .. 31
Table 7: Example Applications and Potential Middleware Use 34

Middleware Architecture Version 1.0 Revision 5-18-2001

 5

I. Executive Summary of Middleware Architecture

State agencies today are faced with the challenge of integrating the disparate systems and
islands of automation into one enterprise-wide flow of business logic. Often, information
needed by knowledge workers is spread throughout various business applications in
different departments within agencies or is spread across agencies. Knowledge workers
would like to access all the information they need in a transparent and seamless fashion.
To accomplish this, programmers must know how to connect information to applications
and customers no matter where it resides on the network. A middleware architecture
enables agencies to address these connection needs in a consistent and useful manner.
Middleware has been described as the software glue that ties applications together across
a network. Middleware can allow organizations to share data between systems that do not
communicate easily. Middleware is the enabler of application communications in a
distributed system and is the tool that improves the overall usability of an environment
made up of products from many different vendors on multiple platforms.

In Virginia, the Enterprise Architecture team has divided the architecture into eight
domains. To cover every aspect of the information technology architecture in one domain
or another the domain teams must break down architecture into components. The
middleware domain team has identified a number of components that they wish to cover
as part of the middleware domain. In considering these components, they have discussed
whether the components belong in the middleware domain or in neighboring domains
including the network, application, security, database, and systems management domains.

The middleware domain team has identified five middleware component types: Database
Middleware, Message-oriented Middleware, Distributed Transaction Processing
Monitors, Application Integration Middleware, and a Super-service Middleware. Super-
service middleware is a collection of two or more middleware components. The various
types of middleware overlap in some services provided. For example, all play a roll in
sending messages (i.e., between applications across the network) and in accessing data.

The Middleware concept is difficult to understand from an enterprise viewpoint without
having some understanding of how the introduction of the client-server environment and
distributed environments affected the complexity of computer programming. Middleware
vendors are trying to address some of these complexities by centralizing certain functions
that may have been embedded in the tools of the network architect, the application
architect, and the database architect. Appendices A and B provide related history and
communication service information in non-technical terms.

Figure 1 provides an overview of many of the services that might be provided by one or
more middleware products. The service management tools on the left are examples of
functions partitioned from applications and databases for provision centrally in the
computing environment (between rather than within the application and databases). The
communication services on the right are partitioned from the total “protocol stack” that is
required for communication between senders and receivers on a network. So, a big
picture look at middleware would emphasize the bringing to the middle certain services

Middleware Architecture Version 1.0 Revision 5-18-2001

 6

Service Management Tools

1. Environment description tools: example tools might include

• business rules/workflow definition tools
• distributed environment definition tools
• object reuse location repository
• message type definitions
• protocol translation information for the environment
• event registry
• distributed location information

2. Diagnostic and analysis tools for monitoring transactions:
• monitoring metrics
• load balancing services
• metric reporting/viewing services

3. Scripting tools for configuring each middleware component.

4. Pre-configured message types for metrics and analysis (e.g.,
directory entries to aid in counting important parts of financial
transactions)

so that they can be created one time, managed centrally, and used many times by the
distributed network applications.

Figure 1: Example Middleware Tools and Services

All agency business applications distributed over a two- or three-tiered environment or
involving network communications between clients and servers require some of the
functionality that may be provided in a bundled middleware product. In agencies without
a bundled middleware product, these services are provided through middleware tools
acquired along with the operating systems, in database products, as part of shelf-ware, as
separate tools and/or through functionality coded into local applications. The acquisition
of a super-service middleware product would enable addressing many middleware
service needs.

Much of this document is technical in nature and explains in more detail the concepts of
middleware. In addition to providing this information, the middleware team addresses the
desired Commonwealth technology directions for middleware architecture by applying
one of four rating categories to the various technologies that are used to provide
middleware services and functions. The rating categories are Obsolescent, Transitional,
Strategic, and Emerging. This information will help those evaluating middleware
products. The rating terms are defined below.

• Obsolescent - The Virginia Enterprise Architecture actively promotes that agencies employ a
different technology. Agencies should not plan new deployments of this technology. Agencies
should develop a plan to replace this technology. This technology may be waning in use or no
longer supported.

• Transitional - The Virginia Enterprise Architecture promotes other standard technologies.
Agencies may be using this technology as a transitional strategy in movement to a strategic
technology. This technology may be waning in use or no longer supported.

• Strategic - The Virginia Enterprise Architecture promotes use of this technology by agencies.
New deployments of this technology are recommended.

Communications Services

• Directory Lookups
• Security Services (e.g., encryption)
• Translation Services (e.g., decryption)
• Database to Database Interconnections
• File Transfers
• Asynchronous Messaging (one-way)
• Synchronous Messaging (two-way)
• Application Interfaces
• Message Publish and Subscribe

Services (e.g., like news services)
• Message Store and Forward Services

(e.g., like email)

Middleware Architecture Version 1.0 Revision 5-18-2001

 7

• Emerging - The Virginia Enterprise Architecture promotes only evaluative deployments of this
technology. This technology may be in development or may require evaluation in government and
university settings. Use of this technology may be high risk.

The guidance provided in this document is for agencies and for those who serve agencies
in matters related to technology. The word “agency” as used in this document means all
state, local, and education units of government. In general, the document will provide
guidance and information to agencies in the following ways:

1. Recommendations regarding proposed Information Technology Resource
Management (ITRM) Policies, Standards, Guidelines (PSGs) for agencies.

The proposed policies, standards and guidelines (i.e., best practices) offered in
this document will be reviewed by appropriate stakeholders and then converted
into official ITRM PSGs. The policies, standards and best practices begin on page
35. Unless otherwise indicated, policies and standards (existing and
recommended) are requirements for state agencies and for local agencies
receiving state funding for referenced efforts and related acquisitions.

2. Discussions of middleware types, services, and technologies.

Those interested in a particular middleware function are encouraged to read
specific sections as follows: database connectivity on page 13; messaging on page
17; high-volume transaction processing monitors, page 24; application integration
servers, page 27; super-service middleware, page 33.

3. Example e-government applications.

Example uses of middleware are described beginning on page 35.

4. Tables indicate recommended strategic technologies.

Strategic technologies may meet an agency’s needs. These tables provide a
starting point for product component evaluation, but each agency is advised to
pilot actual products. The obsolescent, transitional, strategic, and emerging
technology ratings are provided in tables. See Tables 2 for database connectivity,
4 (messaging), 5 (transaction processing), and 6 (application integration).

5. A Glossary of middleware terms (see page 39).

6. Web links for more information are provided in the Glossary and in
Appendix D.

7. A Quick Reference is provided in Appendix E.

II. Mission
To explain the purpose of middleware, to define the tools and services that may be
provided in a middleware product, and to provide additional decision-relevant
information to help agencies and other responsible parties make informed decisions
regarding their middleware architecture.

Middleware Architecture Version 1.0 Revision 5-18-2001

 8

III. Introduction and Background
Virginia’s Enterprise Architecture (EA) includes business, governance and technical
components that describe how Virginia will use technology and proven practices to
improve the way it does business. The technical components are referred to as the
Enterprise-Wide Technical Architecture (EWTA) and are comprised of eight domains.
Together, these domains constitute a comprehensive framework for providing technical
guidance and related best practices to Virginia’s agencies.

The EWTA is being developed in stages and will be updated routinely. The Council on
Technology Services (COTS) and its work groups are responsible for the development
and updating efforts. Those involved began their efforts by specifying business strategies
and information requirements, which were used to determine expectations for Virginia's
future enterprise architecture. The following diagram summarizes the development
process and identifies the responsible groups (see Figure 2 below and Appendix C.,
Domain Team Working Documents).

Figure 2: Development of the EWTA

Table 1: Enterprise-Wide Technical Architecture (EWTA) Domains

Base Functional Glue Application

Network Architecture

Platform Architecture

Middleware Architecture

Systems Management Architecture

Database Architecture

Application Architecture

Information Architecture

Security Architecture

The eight technical architecture domains are listed in Table 1. Each of the eight domains
is clearly a critical piece of the overall architecture. The Network and Platform Domains
address the infrastructure base. These two areas provide the foundation for any
distributed computing architecture. Systems Management, Database, Application, and
Information Domains provide vehicles for discussing the business functionality and
management of the technical architecture. The Security Domain addresses the many
vehicles for enhancing information security across the architecture. The Middleware
Domain addresses the interfacing of disparate platforms, systems, databases and
applications in a distributed environment. These eight domains provide a useful way of
communicating guidelines, policies, standards and best practices of the EWTA to

The Council on Technology
Services (COTS) develops a
list of Enterprise Business
Strategies (EBS).

The COTS Enterprise
Architecture Work Group
develops Requirements for
Technical Architecture (RTA)
from the EBS and provides
guiding principles.

The EA Workgroup Domain Teams
use the RTA and principles as they
develop the domain definition,
scope, and guidance components,
thus ensuring that VA business
requirements drive EWTA.

Middleware Architecture Version 1.0 Revision 5-18-2001

 9

stakeholders in state and local government agencies and state universities. Only the
middleware domain is addressed in this document.

IV. Methodology
The middleware domain team began its work with an orientation to the middleware
architecture developed by the State of North Carolina. The team also reviewed the
middleware architectures for the states of Ohio and Connecticut, position papers by
industry strategists including the META Group and GartnerGroup, and did extensive
Web research. Domain team members discussed this information and reviewed existing
middleware architectures used by Virginia’s agencies to identify what types of
Middleware products Virginia will need to enable a citizen centric e-government.

The intended audience for the Middleware Domain Architecture is both business and
technical leaders in state and local agencies including universities, colleges, and agencies
from all branches of government. This document will identify the trends, best practices
and emerging standards to help agencies make decisions regarding their middleware
architecture. For middleware acquisition decisions, this paper will provide a discussion of
when an individual agency might need middleware, how an agency might decide what
services should be provided through their middleware tools, and how connectivity rules
are evolving for middleware functions.

A. Middleware Definition

Middleware Architecture defines the functions that enable communications in a
distributed system and the tools that improve the overall usability of an architecture made
up of products from many different vendors on multiple platforms. Middleware is
software that allows organizations to share data between disparate systems that do not
communicate easily. Middleware has been described as the software “glue” that ties
different applications together.

B. Benefits

Middleware products may be used to benefit the Commonwealth in the following three
ways.

• Middleware services and tools are key to creating citizen centric service portals1
that enable information and services to be obtained at one place from multiple
State agencies.

1 According to civic.com in the April 2001 feature on government web portals, “Most states expect the task
of having all services available through the portal to take at least five years, if not longer. ‘I liken it to
building a stained glass window’, said Arun Baheti, director of e-government for California. ‘We have that
overall image – giving citizens one view into government – but we still have to put the smaller pieces of
glass the individual projects into the larger mosaic’”.

Middleware Architecture Version 1.0 Revision 5-18-2001

 10

• Middleware services and tools are key to extending the utility of the State's
technology infrastructure and skilled workers while developing new services that
rely on communications between existing services.

• Middleware services and tools are key to interfacing beyond state agencies to
localities, federal agencies and the business sector.

C. Types of Middleware

1. Database Middleware enables applications to communicate with one or more
local or remote databases. It does not transfer calls or objects. For example,
database middleware does not allow for two-way communication between servers
and clients. Servers cannot initiate contact with clients, they can only respond
when asked.

2. Message-Oriented Middleware provides an interface between applications or
application parts, allowing for the transmission of data back and forth
intermittently. Messaging middleware is similar to an e-mail system that transfers
messages between people, except that it sends information between applications.
If the target computer is not available, the middleware stores the data in a
message queue until the machine becomes available.

3. Transaction-Process Monitor Middleware is software that sits between a
requesting client program and databases, ensuring that all databases are updated
properly. It is a control program that manages the transfer of data between
multiple terminals or clients and the application programs that services them.

4. Application Integration Middleware provides interfaces to a wide variety of
applications. It can provide ways for legacy systems to interface with network
clients (e.g., use a thin-client browser to run a legacy system) or ways to execute
functions across a network from one application to another.

5. Super-service Middleware is the collection, management and integration of
multiple (heterogeneous) types of middleware with value added services. These
super services are often Web-enabling middleware that allow for the easy
integration of back-end applications with new e-commerce and e-government
systems. Super-service middleware enables rapid response to changing business
requirements.

Note: The above types of middleware are not mutually exclusive. Also, the types do not
cover every type of middleware. For example, mobile users of networks require a
specialized middleware that stores messages both on the client and on the server so that
information is not lost when a connection is broken. 2 For the middleware types listed
here, however, examples of overlapping functionality may useful. Database middleware
and transaction processing middleware, for example, both enable database connections,

2 Mobile user middleware will be covered in a separate paper. The use of radio-frequency connections to
local area networks is a still evolving area. Many vendors provide proprietary tools that are specialized for
the type of network access needed and the tasks that the mobile user needs to perform.

Middleware Architecture Version 1.0 Revision 5-18-2001

 11

but transaction processing middleware extends and add value to the database
communication process. All types of middleware process messages sent between client
applications and server applications. All middleware provides ways for messages to get
from the application to the network. Also, all middleware provides a way of letting the
application know a message was received. The classifications indicate specializations and
added services. These differences are presented in considerable detail in this document.

Much of this document is technical in nature and explains in more detail the concepts of
middleware. In addition to providing this information, the middleware team addresses the
desired Commonwealth technology directions for middleware architecture by applying
one of four rating categories to the various technologies that are used to provide
middleware services and functions. The rating categories are Obsolescent, Transitional,
Strategic, and Emerging. This information will help those evaluating middleware
products. The rating terms are defined below.

• Obsolescent - The Virginia Enterprise Architecture actively promotes that agencies employ a
different technology. Agencies should not plan new deployments of this technology. Agencies
should develop a plan to replace this technology. This technology may be waning in use or no
longer supported.

• Transitional - The Virginia Enterprise Architecture promotes other standard technologies.
Agencies may be using this technology as a transitional strategy in movement to a strategic
technology. This technology may be waning in use or no longer supported.

• Strategic - The Virginia Enterprise Architecture promotes use of this technology by agencies.
New deployments of this technology are recommended.

• Emerging - The Virginia Enterprise Architecture promotes only evaluative deployments of this
technology. This technology may be in development or may require evaluation in government and
university settings. Use of this technology may be high risk.

The guidance provided in this document is for agencies and for those who serve agencies
in matters related to technology. In general, the document will provide guidance and
information to agencies in the following ways:

1. Recommendations regarding proposed Information Technology Resource
Management (ITRM) Policies, Standards, Guidelines (PSGs) for agencies.

The proposed policies, standards and guidelines (i.e., best practices) offered in
this document will be reviewed by appropriate stakeholders and then converted
into official ITRM PSGs. The policies, standards and best practices begin on page
35. Unless otherwise indicated, policies and standards (existing and
recommended) are requirements for state agencies and for local agencies
receiving state funding for referenced efforts and related acquisitions.

2. Discussions of middleware types, services, and technologies.

Those interested in a particular middleware function are encouraged to read
specific sections as follows: database connectivity on page 13; messaging on page
17; high-volume transaction processing monitors, page 24; application integration
servers, page 27; super-service middleware, page 33.

3. Example e-government applications.

Example uses of middleware are described beginning on page 35.

Middleware Architecture Version 1.0 Revision 5-18-2001

 12

4. Tables indicate recommended strategic technologies.

Strategic technologies may meet an agency’s needs. These tables provide a
starting point for product component evaluation, but each agency is advised to
pilot actua l products. The obsolescent, transitional, strategic, and emerging
technology ratings are provided in tables. See Tables 2 for database connectivity,
4 (messaging), 5 (transaction processing), and 6 (application integration).

5. A Glossary of middleware terms (see page 39).

6. Web links for more information are provided in the Glossary and in
Appendix D.

7. A Quick Reference is provided in Appendix E.

The term "agency" means Commonwealth of Virginia executive branch agencies and
institutions of higher education. For the purpose of this document, however, any
academic "instruction or research" systems/infrastructure that can be isolated from
"administrative and business" systems/infrastructure are considered exempt from the
stated architecture standards.

Concerning local governments and other public bodies, while they are not required to
comply with the standards, the information technology specifications for participation in
state programs would be based on the architecture described herein. This architecture was
designed with participation of local government and other public body representatives
with the intent of encouraging its use in state/local interoperability activities.

V. Principles
The middleware team identified three domain-specific principles. These are presented
below.
Principle 1: The Commonwealth should provide seamless access to data and services.

• There is increasing emphasis on the implementation of a single Commonwealth of
Virginia portal for citizens to use to obtain data and services from the State.

• There currently are portals for individual State agencies, which provide a separate
means to access data from those agencies.

Principle 2: Agencies should strive for inter-operability.

• There is an increasing need for systems to inter-operate within and across
agencies.

• Middleware can help in providing the inter-operability needed within the
enterprise.

Principle 3: Middleware should provide flexibility, portability, and cost effectiveness in
the implementation of enterprise architecture.

• State agencies have limited resources with which to implement enterprise
architecture.

Middleware Architecture Version 1.0 Revision 5-18-2001

 13

• State agencies must be able to react quickly to change.

• State agencies must continue to use legacy systems.

VI. Middleware Functions
In this section, the major protocols in use, usually known by acronyms, will be described
and rated (see Tables 2, 4, 5 and 6.). The ratings that are applied are "obsolescent,"
"transitional," "strategic," or "emerging" (see definitions). Agencies are encouraged to
acquire middleware that employs technologies in the “strategic” category.

A. Database Middleware

Database Middleware enables applications to communicate with one or more local or
remote databases. It does not transfer calls or objects. For example, database middleware
does not allow for two-way communication between servers and clients. Servers cannot
initiate contact with clients, they can only respond when asked. The discussion of
database middleware is broken into directory, metadata, access services, and related
guidance. Guidance information may direct the reader to other domains when those
documents become available.

A.1 Directory Services

A directory may be described as a specialized database of lists. Directories serve a wide
variety of functions in a computing environment and are used by applications including
email, security, and naming services. Directory services are important as tools in the
communications process and decisions about directory services are one of the most
important foundation decisions an agency can make in planning a distributed architecture
and middleware strategy. Deciding on a desired external directory strategy (e.g., external
to the database system or network management system) before looking at middleware
products will allow an agency to be more critical of how middleware components are
integrated, especially in bundled, multi-vendor products. Having a directory strategy is an
integral part of promoting interoperability, location transparency, and lower future
maintenance costs in a distributed environment. Some directory services can be
configured with strong security by attribute so that everyone could see a user email
address for example but only the user could update a password or see other personal
information. Some example uses of a directory to support government functions are
provided below:

• Certificate authority information and public keys for digital signatures

• Single sign-on password information for employees and other authorized
individuals

• A statewide citizen-changeable address store that could be accessed by
subscribing agencies

• Encrypted agency PIN numbers for citizen access to services

Middleware Architecture Version 1.0 Revision 5-18-2001

 14

• Object naming for reuse by programmers

• Employee address, office phone or email information for updating by employees

Lightweight Directory Access Protocol or LDAP is based on the X.500 open standard.
LDAP specifies the access method and protocol, not the storage structure. LDAP enables
extensible access to directories. Using LDAP, directory organization can be configured
and extended to add additional categories and attributes. Active Directory Server from
Microsoft and Netscape Directory Server are two LDAP compliant directory servers for
the NT server networks but LDAP compliant access and storage methods are becoming
available on most platforms. Initial implementation of the Microsoft Active Directory
Server with Windows 2000 was slowed due in part to changes in the way copies of the
directory are replicated and the need for careful planning in organizing the directory
structure.

Two additional related directory standards that have been very important to the growth of
the Internet are: Domain Naming Service (DNS)--A distributed directory service that
may be used on the Internet along with Global Directory Service (GDS) to provide a
worldwide hierarchy. This is what enables Internet users to access a Web site by typing a
friendly name in the format “www.site-name.com” instead of requiring users to
remember complicated series of physical Internet Protocol (IP) addresses with port
numbers in the format “127.127.127.127:9999”.

(Note: DNS is criticized for its lack of extensibility and its inflexibility in the area of
searching. LDAP has both search and extensibility features).

The Open Group’s Distributed Computing Environment (DCE) maintains the LDAP
standard3. For a guide to additional information on LDAP and related standards work, see
http://www.opengroup.org/directory/, the Directory Interoperability Forum.

A.2 Database Metadata Services

Metadata is data about data. A Mars spacecraft crash was attributed to using the wrong
interpretation of the type of measurement data in a calculation (metric vs. standard).

Metadata is all the descriptive information that lets us make sense of the data. It tells us
things about the data such as: how to interpret it; the business and technical definitions
and descriptions; how it may be used; what constraints there are in its use; where it
originated; who creates it; who is responsible for it; what business processes it supports;
where it is used; its frequency of use; and any other information deemed valuable by the
organization. English language or business names for the data, synonyms (other database
table or attribute names that refer to the same data), table relationships and the physical
database locations should also be included in a comprehensive metadata repository.

3 DCE provides a complete Distributed Computing Environment infrastructure. It provides security services
to protect and control access to data, name services that make it easy to find distributed resources, and a
highly scalable model for organizing widely scattered users, services, and data. DCE runs on all major
computing platforms and is designed to support distributed applications in heterogeneous hardware and
software environments. DCE is a key technology in three of today's most important areas of computing:
security, the World Wide Web, and distributed objects. (From the Open Group DCE Web site.)

Middleware Architecture Version 1.0 Revision 5-18-2001

 15

Policies should be developed for uniform abbreviations, uniform classifications and
access types.

The Object Management Group (OMG) and the Metadata Coalition (MDC) are
developing a joint metadata model. In the past, metadata tools followed different formats.
A subset of these open metadata repository formats and access tools will enable designers
of systems to find and utilize existing data and services. Attaining reuse of data and
services has been an elusive goal of the architecture for years. In the future, both
application designers and applications will be able to use middleware tools to
communicate with metadata repositories and find existing data, services, functions,
message format descriptions, etc.

Extensible Markup Language (XML) is a popular method for formatting data message
exchange over the Internet. However, so each agency and locality does not develop their
own set of formats to describe essentially the same data, sharing and reuse of these
definitions will be important. This kind of new information can be placed into an
accessible meta-metadata repository to allow developers to share and reuse solutions.

A.3 Database Access Services

1) ODBC

The term Open Data Base Connectivity (ODBC) is often used to refer in a general way to
a group of middleware database connectivity drivers and services. The drivers are
written to open specifications for accessing data called Structured Query Language
(SQL). This includes ODBC, JDBC (for Java), and OLE-DB. Most relational databases
support this method of access natively. This method is commonly used for reporting
programs to access application tables and for doing lookups in other databases or
obtaining data to extract or import into another database. However, since the access is
direct and not through the application business rules, ODBC data access should not be
used to modify data in different applications by anyone other than the owner of the data.
This access method bypasses any security roles and policy maintained through the
application interface instead of through database security.

2) Database Gateways / Adapters
Database gateways enable data access and sharing between heterogeneous databases. In
order to access non-relationa l, or legacy databases that do not natively support SQL
access, translation database access software needs to be installed on a device with access
to the source database. In the past, these gateways enabled the requesting system to
utilize the proprietary commands of the host system to access the data, instead of SQL
commands. This approach may be advantageous for an application that is being ported to
a new platform where the need is to maintain compatibility with the existing application.
It is also advantageous when there is a performance penalty for using the open SQL
command instead of the proprietary native command. However, for other generic
systems, the preferred method is to use the SQL open standard access method.
Adapters are essentially pre-built interfaces for connecting one application to another
common business application. Adapters in addition to providing access to the data, may
also be application program interfaces, object request protocols, etc. Adapters provide a

Middleware Architecture Version 1.0 Revision 5-18-2001

 16

way to utilize the security and business rules embedded in the application logic. The
programmer should be able to extend or modify the adapter if the target application is
modified. Even if customization is needed, an adapter can provide a starting point and
framework for the programmer.

A.4 Database Middleware Guidelines
Table 2 provides technique and protocol ratings for directories, metadata, and database
connectivity. In general, those technologies listed as strategic are based on open
standards. Agencies are encouraged to incorporate into their architecture one or more of
the technologies and strategies listed as strategic. Commentary regarding the
aforementioned technologies and related tools are provided below.

Table 2: Database Connectivity Technology Ratings

Obsolescent Transitional Strategic Emerging

Directories

 X.500 DAP LDAP, DNS & GDS

Sun JDAP

Novell NDS

MS Active Directory
(ADSI)

Metadata

Business rules and
meaning hard coded
into applications.

Hard copy only
documentation of
metadata.

Configurable
metadata separate
from application but
proprietary to system.

OMG’s UML, MOF

MDC’s XMI (XML, DTD,
Schema)

OIM’s exchange format XIF
(XML)

Accessible, computer aided
metadata documentation (e.g.,
ERwin modeling tool) and a
metadata repository

Active metadata
repository

Data Access Methods, Adapters, Drivers, and Contracts

OLE (replaced).

Screen Scrapers as a
mainframe access.

Non-ODBC/SQL
compliant Gateways

Translators for non-
standard SQL, XML,
etc.

DB Adapters or Drivers: ODBC,
JDBC, xDBC, OLE-DB
(platform specific)

XML point to point contracts
(e.g., for Schemas)

ODBC/SQL compliant gateways

XML messaging

ODBC drivers may not support all versions or extended features of the host databases.
Agencies should use certification labs or groups to test new database ODBC drivers and

Middleware Architecture Version 1.0 Revision 5-18-2001

 17

new databases especially if any non-standard features are being utilized. Middleware
database connectors should support common standards such as ODBC standards and
should be able to do intelligent SQL query optimization and rationalization appropriate to
each target data source.

Query governance should be part of database management tools so a que ry submitted by
a user cannot bring critical systems to a standstill. The software should permit the setting
of time limits or record count limits for users based on their role and need.

Performance monitoring has multiple benefits. It will help identify what sources of data
are getting accessed, and how long it is taking users to run their queries on those data
sources. Queries that exceed a threshold time limit can be logged for further analysis.
This information is important in helping database administrators to reorganize data and
create indexes to speed data access. Also, the information may be used to identify priority
data for migrating to data warehouses thus decreasing transactions in busy data stores.

B. Message Middleware

Message-Oriented Middleware provides an interface between applications or application
parts, allowing for the transmission of data back and forth intermittently. Messaging
middleware is similar to an e-mail system that transfers messages between people, except
that it sends information between applications. If the target computer is not available, the
middleware stores the data in a message queue until the machine becomes available.

B.1 Message Formats

In this section, the term “messages” will be used in the broadest sense to encompass
transaction-based messages as well as entire file transfers. To many messaging systems,
the format of the content of the message doesn’t matter as long as it has the understood
envelope/wrapper or an operating system recognizable format. However, the format of
the content is very important to the receiving operating system, application, or user.
Format translations may be performed by middleware. Also included in this section are
messages that are object-oriented. These messages are requests or replies that are issued
or received by applications or databases.

When data or even entire databases are transferred between like systems, the entire tables
can be copied in their native format. If the systems are dissimilar, data must be converted
to a common format understood in both systems. In the past, this format was stated in a
standard such as EDI and the encoding was often ASCII, or human readable text that was
either fixed-width or delimited with a special character that could be understood by both
systems. Sometimes both systems support a common method of formatting or delimiting
the export/import file but in other cases, an intermediary program or middleware
application is needed to do some transformation.

The ASCII encoding has been used for both file and transaction-based message systems.
ASCII is compact, efficient, and compressible. ASCII continues to be used today in
newer data access messaging methods such as the Extensible Markup Language (XML).
With XML, the standards provide message format and document type definitions (DTD)

Middleware Architecture Version 1.0 Revision 5-18-2001

 18

much like Electronic Data Interchange (EDI) standards provide file formatting for
sharing common documents such as Purchase Orders between different systems. Existing
EDI methods are still in wide use for financial transactions when modifications or
extensions are not needed. To achieve the same goal of standardization today for a wider
variety of applications, the trend is to use the XML tagging standards along with
contractual arrangements between the sending and receiving parties. With XML, the
method is standard and the content or meaning is flexible.

XML methods can be used to provide structured data formatting for either transaction
based messages or entire files. XML is a subset of Standard Generalized Markup
Language (SGML) as is Internet Hypertext Markup Language (HTML). It provides start
and end tags in a hierarchical structure to define data for example:

<XML>
 <EMPLOYEE>
 <NAME>John C. Smith</NAME>
 <DIVISION>Fiscal</DIVISION>
 </EMPLOYEE>
<XML>

Many databases now read XML input, have XML tools and provide XML output (e.g.,
the requested data from an XML or SQL query may be output in the form of XML tagged
data). XML messages can transmit DTDs or XML Schemas in the same message with the
data or in a linked file. The DTDs and Schemas define the rules for what may be in the
file and what it means. One of the benefits of using XML files is that the source system
can add a new tag to the message without breaking the message communication.

The human readable ASCII encoding and format tags are helpful to the programmers.
Programmers need to tell the application what to look for in each message type and so
need to understand what tags to expect in what messages. For this reason it is important
for agencies to develop consistent approaches to tag definitions across applications. Any
standardization effort needs to take place between communicating Commonwealth
government entities or other communicating entities including other states, industry
parties, the federal government or even other countries. However, it is also important to
keep in mind that one of the benefits of XML is its flexibility. Standardizations should
not get in the way of timely and useful solutions. To aid in standardization that would
promote XML Schema reuse and tagging standards, the Commonwealth may wish to
create a central metadata repository accessible to all Commonwealth agencies.

Efforts in the area of geographic information systems (GIS) provide an example of the
reuse that is possible. GIS standards have affected GIS data transmissions in ways similar
to the affect of EDI on financial communications. Standards for GIS metadata and
messages has been instrumental in the development of GIS mapping servers that can
search for data stored on distributed servers and overlay it on a map in the client browser.

One potential area of weakness for XML is its high overhead (e.g., from tagging). For
moderate sized messages the automatic compression of HTTP 1.1 (the core protocol of
the Internet) or standalone compression tools can improve the transmission efficiency.

Middleware Architecture Version 1.0 Revision 5-18-2001

 19

B.2 Message Transfers

1) File Transfers

The most common form of message sending and receiving is a request for the transfer of
a file. File transfer requests are generally accomplished through the use of operating
system “file copy” commands. Middleware compression programs are sometimes used to
shrink the size of the message copied.

2) Terminal Emulation

Mainframes have difficulty communicating to the Web natively because their
communications protocols were developed and fleshed out before LANs and WANs
became ubiquitous. Visual user interfaces other than terminals typically do not exist for
mainframes.

Screen scrapers are one middleware method of converting terminal output to browser-
viewable output. Thin-client middleware technology is similar but involves running the
terminal application on a remote server and transferring the pixels and pixel changes to
the end-user’s browser. XML conversion of the output is a third approach. Hostbridge,
for example, uses a middle-tier application to invoke a CICS transaction using Internet
protocols and provides output as an XML document, instead of a mainframe terminal
screen. With mainframes, middleware products provide work-arounds because
middleware is a distributed system concept and mainframe communications methods do
not blend easily with distributed network communications.

3) Translation Services

Some middleware products provide platform-related translation services to ensure that
the message is delivered in a language or form that can be understood by the receiving
application. Common examples include 7-bit to 8-bit ASCII (American Standard Code
for Information Interchange) or ASCII to EBCDIC (binary coded data). Translation
service may also include translation from one proprietary implementation of XML to
another.

4) File Transfer Protocols

File Transfer Protocols (FTPs) are used to transport whole files over the Internet. This
protocol allows files to be transferred between dissimilar systems but it is not a secure
protocol. Some middleware tools may enable the scheduling of file transfers for after
hours processing, add automated archiving, error recovery, and summary logging. FTP
(IETF RFC 9594) should not be used if data security is an issue as passwords are
transmitted in clear text. A security extension to FTP is provided in IETF RFC 22285.

5) HyperText Transfer Protocol

HTTP is short for HyperText Transfer Protocol, the underlying protocol used by the
World Wide Web. HTTP defines how messages are formatted and transmitted, and what
actions Web servers and browsers should take in response to various commands. For

4 http://ietf.org/rfc/rfc959.txt?number=959 provides the original FTP specifications from the Internet
Engineering Task Force (1985).
5 http://ietf.org/rfc/rfc2228.txt?number=2228 provides the security extension RTF from 1997.

Middleware Architecture Version 1.0 Revision 5-18-2001

 20

example, when you enter a URL in your browser, this sends an HTTP command to the
Web server directing it to fetch and transmit the requested Web page.

XML is transmitted using HTTP. With XML, the presentation of the data can be
separated from the screen format. A programmer may use XML-aware application tools
including parsers, extensible style language (XSL) and cascading style sheets (CSS) to
create more than one presentation of the data. For example, PDAs and cell phones require
presentation styles that are quite different from what would be appropriate for a computer
monitor. Yet, because of CSS, the same XML data could be sent to PDAs and computers
and a different interface would be shown to each equipment user. Style sheet aware
browsers can enable multiple viewing options for the Internet client without requiring the
server to resend the data. Browser support for XML style sheets is fairly recent.

HTTP is called a stateless protocol because each command is executed independently,
without any knowledge of the commands that came before it. This is the main reason that
it is difficult to implement Web sites that react intelligently to user input. This
shortcoming of HTTP is addressed in a number of technologies, including ActiveX, Java,
JavaScript and Cookies.

B.3 Message Oriented Middleware

Message Oriented Middleware (MOM) refers to a special set of software applications that
are used to manage the message distribution, receipt confirmation, and error handling
processes. The messages are distributed network communications between applications.
Message tracking on a distributed network is like international package delivery tracking.
For example, package shippers today are able to know exactly where their packages are
at each step of a physical delivery sequence, which packages are lost, and which are
damaged and require resending. To have this level of information detail about application
communications, the programmer must rely on middleware tools. To address such
complex message sending, tracking and receipt recording requirements, MOM vendors
provide several different message services.

1) Store and Forward Middleware and Services

Store and forward services allow the producer of a message (e.g., one application) to
identify the recipient location, but if the recipient is not available, the message is held in a
central queue or store. The transmission of the message to the recipient may be delayed
until multiple messages have accumulated for the recipient, until a time interval has
elapsed, or until an event has occurred (e.g., the recipient has become available). This
service can enable a busy system to delay processing messages that are not time sensitive
to off hours.

Email applications employ a store and forward method of messaging. Email illustrates
both the benefits to be gained from this form of messaging and the potential problems
that are inherent in messaging systems. Before the advent of Internet mail standards,
email systems in the Commonwealth were often incompatible. Middleware was
sometimes used to translate between the systems or to provide additional functionality on
top of the email. Now state and local agencies are well on their way towards
standardization in this area. The email applications used support receiving standard

Middleware Architecture Version 1.0 Revision 5-18-2001

 21

messages from any system. One of the weaknesses of email messages is that they are one
way. A response is procedurally required when appropriate but not mandatory. Complex
systems have been built based on email messaging, but they require both sides to trust
that the other will respond as appropriate and in a timely manner. Extensions to email
systems that are not uniformly implemented include options for notification of message
receipt, notification of message being opened, or recall of the message (optional
applications that can be invoked by the sending application).

2) Publish/Subscribe Middleware and Services

Publish and Subscribe Middleware services allow the producers of messages to publish
the messages to a central location. This central location then uses distribution lists
formed by subscription of the recipient.

3) Event Registry Services

For any messaging system, a variety of events may occur between receipt and delivery
for one-way messages (asynchronous) or between request and reply for two-way
messages (synchronous). To manage and use these events to control messaging, the
messaging system needs a way to identify the events and exceptions. Examples of events
are “server is not available”, “time limit has passed”, or “now is 8:00 AM”. Example
responses are “check for server availability” or “notify sending application”. Once a
message leaves its application and before it gets to its destination, the use of events and
actions falls under the auspices of middleware. Messaging middleware enables the
establishment of an event registry and event monitoring services. The event registry can
be used to identify thresholds and corresponding actions (e.g., recovery steps). In the case
of transaction processing monitor software, the events and responses may be more
complex, involving transaction statistics and invocation of special functions. When the
transaction process runs cleanly, performance statistics would be gathered but nothing
more. But if the process were to fail, the failure event may invoke a paging function to
notify the operator on call or if no answer, the backup or supervisor.

4) Intelligent Routing Services

Intelligent Routing Middleware Services ensure the message gets delivered to the
appropriate recipients in the correct sequence. The routing service can be configured to
handle the exceptions with instructions to forward the message on to another service or to
return it if the intended recipient is not available. It could also be configured to transfer a
message in sequence from one recipient to another.

B.4 Messaging Middleware Standards

The recommended protocols may apply to mail messaging and/or other application-to-
application messaging. Mail programs should support use of MIME, be SMTP/ESMTP
enabled, and provide proxy through IMAP4/POP3 servers. Mail programs that interface
with Windows clients use Microsoft's MAPI interface. Middleware protocols used by
mail applications and/or other applications include: LDAP, DNS, SSL (Secure Sockets
Layer), and additional security protocols. Mail uses security protocols for digital
signatures and related encryption. Encryption may also be used in the transmission of

Middleware Architecture Version 1.0 Revision 5-18-2001

 22

sensitive data over LANs including transmissions of passwords, social security numbers,
credit card numbers, etc.

MIME stands for Multipurpose Internet Mail Extensions (see examples in Table 3).
MIME extensions are important to the recipient mail application because they are used to
identify the helper application that enables viewing of the attached file. Several examples
of common MIME types are provided below as examples.

Table 3: MIME Examples6

MIME Type Extension Explanation

text/html html, htm Hyper-Text Tag Markup Language

text/plain txt, text Plain ASCII text

image/gif gif Graphic interchange format

image/jpeg jpeg, jpg Joint Photographic Experts Group

image/tiff tif, tiff Tagged Image File Format

application/pdf pdf Portable Document Format

application/msword doc Microsoft Word format

application/zip zip compression format

B.5 Message Middleware Guidelines
Table 4 provides information on strategic technologies and approaches related to email,
messaging, and secure messaging. In general, those technologies listed as strategic are
based on open standards. Agencies are encouraged to incorporate into their architecture
one or more of the technologies and strategies listed as strategic. Additional commentary
regarding the aforementioned technologies and related tools is provided below.

1) Design Interfaces to be Message based

Interfacing a new application to an existing one is easier when applications are designed
for messaging. In an application designed for messaging, the interface mechanism is
already defined. The interface process can be automated without modifying the target
application.

2) Move towards Asynchronous Messaging

Messages are essentially requests or responses. Interactions between applications and/or
databases are of four types from the viewpoint of a programmer:

1. Synchronous messages (requester suspends processing);

6 The assignment of MIME types is controlled by the Internet Assigned Numbers Authority (IANA).
MIME sub-types that begin with 'x-' are not registered with IANA.

Middleware Architecture Version 1.0 Revision 5-18-2001

 23

2. Deferred synchronous messages (e.g., requester uses polling but continues
processing);

3. One-way messages (no reply expected); and

4. Asynchronous messages (requestor continues processing and replier interrupts).

Asynchronous messaging provides greater efficiencies. The systems do not need to have
synchronized startups or shutdown procedures. Messages can be stored and processed
once the system becomes available. There may be procedures that cannot be completed
without a response from the recipient, but the source system can gracefully give a reason
and a resolution to the client.

3) Messages may have to be delivered to a variety of platforms.

Although middleware can provide some translation services to assist with application-to-
application communications, there are also several protocols and methods that are
designed to facilitate communications across platforms. ASCII, EDI, XML, and to a
lesser extent MIME types, define open message format standards that can be supported/or
translated on most platforms.

Table 4: Message -oriented Middleware Technology Ratings

Obsolescent Transitional Strategic Emerging

Email Messaging (Asynchronous)

Non-Internet
compatible email

X.400

POP3

VIM

CMC

IMAP

MAPI

SMTP/MIME

File and Data Requests/Replies

FTP whenever security
required

 FTP

XML file transfer

Presentation and Translation Services

 Proprietary style
layout separate
from application.

XML and CSS (presentation style
configurable by administrator for
device types)

7 bit ASCII; 8 bit ASCII; EBCDIC
(translation)

XSL
(presentation style
and content
configurable by
user)

Presentation and Translation Services for Security

 Encryption/Decryption Services (a
wide variety of encryption
algorithms are strategic depending
on security needs).

Middleware Architecture Version 1.0 Revision 5-18-2001

 24

Obsolescent Transitional Strategic Emerging

E.g., Symmetric Encryption
DES
Triple DES
RC2
RC4

Presentation: Terminal Emulation

 SNA/SDLC
(OSI level 2)

APPC LU6.2

4) Use security where applicable including appropriate authentication, authorization,
message encryption/decryption, secure transport protocols, and secure storage.
Security services employed by an application are part of a larger set of agency-
determined security policies, strategies, and tool. The security architecture document
addresses this big picture. Middleware plays a role in deploying security as messages
traverse the network and find their destination; however, only a small part of security is
provided through middleware. Middleware provides only selected access, communication
and authorization tools and protocols for networked applications. Actual security attained
by using these tools is dependent on many factors beyond the scope of this paper. As part
of a larger plan for building a secure application, the planner may be interested in
whether the middleware provides a particular level of encryption determined by key size,
for example.

C. Transaction Processing Monitor Middleware and Services

Distributed transaction processing ensures transaction integrity for transactions that
involve databases. Transactions often involve multiple steps, all of which must be
completed before a database commit can be executed. Transaction processing monitors
are critical to n-tier computing, because without them, it would be a very difficult job to
write the programs necessary to track transactions across multiple platforms. Some of the
services provided by transaction processing monitors include the following: two-phase
commits, failure/recovery, synchronization, scheduling, repeat attempts, business-rule-
based transaction workflow services, message queuing resource managers, and load
balancing. These services are described briefly below. General guidance information
follows the descriptions.

C.1 Two-Phase Commits

Commit processing means that a transaction that involves multiple tables or systems is
managed so either all of the data is modified or none.

C.2 Failure/recovery

Transaction monitors maintain a sequenced log of all transactions that happened across
an integrated set of tables. Transactions logs are used to provide the option of rolling
back changes made to the tables to a predefined state by reversing the actions. The logs

Middleware Architecture Version 1.0 Revision 5-18-2001

 25

can also be used to redo the actions after backup files have been restored from a set point
in time, or to redo the actions if an incorrect calculation was being made.

C.3 Synchronization

Transaction monitors can be used to synchronize two different systems. A log is kept of
all transactions, which can then be applied to another system so that an identical set of
inputs may be provided to both systems.

C.4 Scheduling

The log of transactions can be stored in the message queue until a predetermined event,
time, or request occurs to initiate the transfer of those transactions to the other system.
Low priority transactions or non-time sensitive transactions can be delayed for after-
hours processing.

C.5 Repeat attempts

Transaction monitors can manage multiple repeat attempts to update another system or
table, thus, offloading that monitoring responsibility from the requesting system so it can
go on to other requests. The transaction-processing monitor may ensure that required
processes happen or that the appropriate recovery is initiated.

C.6 Message queue management

Message queues are an important feature of transaction processing monitors. Queues can
be established to focus on either availability or reliability. When queues are in memory,
they have greater availability and speedier response times. When disk storage is used, this
provides greater reliability at the expense of availability. Some middleware message
queues provide both disk and memory queues.

C.7 Business-rule-based transaction workflow services

Transacting processing monitors can monitor transaction flows from multiple distributed
systems so that business rules can be applied at a central point and so that intelligent
routing of certain transactions to other systems or persons may take place. To address
customer service and other priorities, business owners may assign priority processing or
special handling to selected transactions. Transaction processing monitors allow the
business owner to change such rules centrally in the monitor without changing the core
application.

C.8 Load balancing services

Load balancing and thread management services are important because transaction
processing monitors need to process many transactions on many different systems in a
very short time period. The monitor can change traffic patterns, processing parameters, or

Middleware Architecture Version 1.0 Revision 5-18-2001

 26

increase the pool of processors. This enables the monitor to dynamically adjust to the
workload.

C.9 Transaction Processing Middleware Guidelines
Table 5 provides strategic open protocols and example mainframe programs used to
define the typical work performed by transaction processing monitors. Transaction
processing monitors on a mainframe may not provide distributed transaction processing
in the same sense as does a middleware transaction processing monitor in a distributed
network environment. However, because today’s middleware transaction processing
monitors were modeled on mainframe monitors, and because mainframe monitors are
still widely used, mainframe monitors are listed here as strategic.

Transaction processing monitors should be used only when transactional integrity is
required. Examples of systems that require transactional integrity include integrated
financial systems and other core, distributed business systems. Some of the other
management capabilities such as scheduling, load balancing, repeat attempts, business
rule workflow or logging with recovery can be found in message-oriented middleware
and database management middleware.

Table 5: Transaction Processing Monitor Middleware

Obsolescent Transitional Strategic Emerging

 X/Open: XA interface, STDL
structured transaction definition
language; DTP, distributed transaction
processing; CPI-C common program
interface for communications

Historical Note: two TP monitors were widely used in the mainframe world and then later transitioned to
the client-server world. These were CICS (customer information control system) and ACMS

D. Application Integration Middleware Servers and Services

Application integration middleware provides interfaces to a wide variety of applications.
Application integration middleware might be a service that enables running a legacy
system through a thin-client browser or a service that enables the execution of multiple
application functions from an integrated user interface. In this section, we will address
the methods used to achieve this integration including; application program interfaces
(API), remote procedure calls (RPC), and object request brokers (ORB). Summary
guidance is provided at the end of this section.

D.1 Methods to Integrate Applications

Methods to integrate applications tend to be aligned with particular application
development languages (e.g., C, C++, Java etc.). The methods are often sets of standards
developed by particular industry groups. However, even when two vendors deploy
implementations using the same set of industry standards (e.g., DCOM—Distributed
Common Object Model), their implementations may have differences and may not

Middleware Architecture Version 1.0 Revision 5-18-2001

 27

interoperate. This result may be due to application tool designers extending the standards
or to the standards not being sufficiently specific.

The different industry protocol sets are not designed to interoperate with one another.
This is not an issue as long as applications are designed to interoperate only within their
intended sphere. When developers try to extend beyond the intended sphere to other
applications that implemented a different industry standard, either a middleware gateway
must be used to provide protocol translation or the developer must employ both sets of
standards in the applications that need to communicate. Remote procedure call
differences provide an example. An ONC+ RPC server application cannot interoperate
with a DCE RPC client application. Either 1) the server and the client must have both
interfaces or a middleware gateway must be employed. In general, it would be advisable
for Virginia agencies to use only one RPC method for within-agency distributed
functions.

1) Application Programming Interfaces (API)

Many common business applications have a defined interface language to allow
programmers to customize or extend the tool. In application-to-application
communications, the programmer may use an application provided API or use a
middleware provided API to which the programmer adds the required arguments. To the
extent that application or database interfaces are open rather than proprietary, future
application maintenance will be lessened. APIs often require: customizations to the
calling program, use of an appropriate application generation tool and supplied library, or
use of a target application software development kit (SDK).

2) Remote Procedure Calls (RPC)

An RPC is a function call issued by the requesting application to run a procedure in a
different address space. RPC code is compiled into programs at both ends of a
communication. RPCs may require the suspension of processing by the sender until a
response is obtained. Implementations today support distributed object components
interoperating as a unified whole. The distributed objects may be on different computers
across a network, and yet to the application, they all appear as if they were local.

There are competing RPC protocols embraced by major industry providers that do not
interoperate. They are Sun's ONC+ RPC and the Distributed Computing Architecture's
RPC (DCE RPC). Initially, Remote Procedure Calls were limited to the network
protocols for which they were developed. This limited cross platform compatibility. The
Internet Inter-ORB Protocol (IIOP) defined a way for any Remote Procedure vendor to
map messages to a common TCP network communication protocol.

3) Object Interfaces

Object interfaces simplify addressing a remote call. Object interfaces are part of end-to-
end object architecture models. Component Object Model (COM, DCOM), Common
Object Request Broker (CORBA), and Remote Method Invocation (RMI) are examples
of object models from Microsoft, Object Management Group, and Sun Microsystems,
respectively. Object architectures provide the interface definition language (IDL) and
blueprints used to define object interfaces (interface stubs for objects). A blueprint

Middleware Architecture Version 1.0 Revision 5-18-2001

 28

provides guidance for the development of the interface with a particular language binding
(dynamic binding). CORBA, for example, provides a variety of blueprints for use by
developers.

4) Object Request Brokers (ORB)

Object Request Brokers act as a software bus for objects to intercommunicate. They
provide an object location and access service. Microsoft, Object Management Group, and
Sun Microsystems all provide this service as part of their object architecture.
Applications can request or dynamically invoke objects regardless of location and
through metadata services defined as part of the end-to-end architecture (e.g., Naming,
Trader, and Interface Repository for CORBA). ORBs also manage object state so that the
application does not have to retry if an object is unavailable.

5) Simple Object Access Protocol (SOAP)

Simple object access protocol or SOAP is a remote procedure call protocol that works
over the Internet. A SOAP message is an HTTP M-POST request. The body of the
request is in XML. The procedure executes on the server, which then replies with
message content formatted in XML. SOAP defines what is in a message, which
application should deal with it, and whether it is optional or mandatory. SOAP also
provides encoding rules for the transport of instances of serialized data. The term ebXML
is used to describe the joint use of XML and SOAP to address EDI- like applications for
e-business using browsers. This protocol may be an important advance for developers
who wish to access objects over the Internet in a standard way without hitting security
limitations.

Because SOAP uses HTTP through port 80, it gets around firewall security in ways that
DCOM and CORBA cannot. Although SOAP’s security avoidance is appreciated by
developers who want the connectivity, from a network security perspective, SOAP access
is a concern. 7 Arguments exist on both sides regarding whether SOAP may be
implemented with adequate security. 8

D.2 Application Integration Management Services

In addition to utilizing the Object interfaces to applications, many Application Integration
Middleware server vendors include other management functions. These may include
conversion services, legacy wrappers, and data integration services (access to a set of
data such as employee data from several remote sites).

1) Legacy Wrapper Services

Legacy wrappers allow connection to common business systems to allow interfacing with
minimal intrusion to the external system. Some package existing legacy code as an object
that can be called from another program.

7 Security concerns are from http://www.vnunet.com/News/1103805 .
8 For security options with SOAP, see http://www.developmentor.com/soap/soapfaq.htm#16

Middleware Architecture Version 1.0 Revision 5-18-2001

 29

2) Conversion Services

Conversion services provide a wizard or engineering support for modifying a target
system to incorporate new object functionality so that the calling program can integrate
with it.

3) Data Mapping and Transformation Services

Data mapping and transformation services can handle the data mapping or
transformations on the fly that are necessary when the format of the data is not
compatible or complete. Other types of middleware also provide these services.

4) Event Posting Services

Event posting services allow monitoring the status of the interfaced functions and calls to
external applications, logging errors, or tracking milestone events. Some ability to correct
and reprocess a call may be provided separately or through an integrated Transaction
Processing Monitor.

5) Process Trigger Services

Process triggers may be linked to calls to objects to cause variable processing based on
the response from the called object. To the extent that the objects and calls have been
defined as steps in business functions, business users may be able to rearrange the steps
without the assistance of IT staff.

6) Automated Workflow Services

Because Application Integration Servers can call different objects from different
applications, they can be used to integrate processes that are handled by different
systems.

D.3 Application Integration Middleware Examples
1) Common Address Change Example:

Application Integration Servers that func tion as a software hub can fuel the imagination
of any citizen or manager. It seems this is the method that can be used to write a function
such as an address change function one time, package it as an object and now call it from
every application that needs to change an address. Or better yet, a developer could have
this one object automatically call every application that stores a particular user’s address.
It would also be possible to call systems that are not connected physically by using the
Internet.

Is the above example achievable? Object calls over a network are becoming
commonplace and protocols under review by standards committees even enable calls
over the Internet. Available technologies can be used to: 1.) connect applications; 2)
provide thin-client, browser-based access to a mainframe; or 3) implement client/server
applications behind the firewall. However, many older applications were not written for
distributed networks and have no exposed API, RPC or COM/CORBA interfaces. Given
the hundreds of programs that store a name and address in the Commonwealth, enabling
such Commonwealth-wide integration for making address changes would be a
monumental task. To integrate to these applications across the Commonwealth, a variety
of changes might be required. For example, the developer might have to modify

Middleware Architecture Version 1.0 Revision 5-18-2001

 30

applications to add appropriate interfaces, and/or replicate application logic in Web
servers, and/or modify database middleware used to manage updates to databases. Other
applications may not be available around the clock; they may be designed for operation
only during office hours or may require batch processing of address changes. Such
applications may need message queue services so information could be stored and
processed when the system is available. The application may not require the services of a
transaction processing monitor. Updating the address in some systems and not in others
would be an option preferable to not providing any central updates. Updating at different
times may be acceptable for many systems. The queue and error logs on the application
integration server would allow addresses changes that could not be made initially to be
updated accurately in a locally determined and timely manner.

2) New Enterprise System Example
Some managers have approached the problem of the many different existing programs by
replacing the many systems with one new comprehensive system. This approach does not
eliminate the need for middleware. Even a comprehensive application may
be distributed across the physical architecture or may have client and server functionality,
thus requiring services provided by middleware. Applications that access objects need
object location and invocation services provided by middleware. Application integration
services may be needed to integrate parts of an application. Database middleware may be
required to do the initial data transformation and loading for the new application. Often,
when implementing a turn-key system, the business may not replace some specialized
functions available previously or an external entity may require specialized or ad hoc
reports. To meet these needs, some kind of database, messaging or transaction processing
middleware will be required. Since Web-enabled applications are a relatively recent
occurrence, some of the older major systems do not support thin client browser access, or
do not support all functions over the Web. Another drawback to the comprehensive
approach is that the extensive scope and timeline can make them costly and time
consuming projects to implement, which increases the risk of failure. But, if successful
and well designed with new object-oriented interfaces, such replacements could be
strategic for building and extending the future architecture.

3) Digital Signature Example

Security is a real concern when extending the application outside of the firewall. The
COTS Digital Signatures workgroup implemented several pilot projects. Most
applications do not natively support the public key infrastructure (PKI) for encryption or
authentication, but most middleware products provide the needed tools. As part of a
larger plan, middleware can help in implementing such methods as using digital
signatures. The tools enable the current applications to utilize security protocols for
authentication or encryption. Also unavailable at present are multi-vendor Certificate
Authorities systems that manage trust levels across vendors. Authentication levels may be
implemented to the same standard (X.509) but given different names. For this reason,
Virginia piloted a deployment of a middleware bridge architecture, for mapping
certificate terminology across vendors.

Middleware Architecture Version 1.0 Revision 5-18-2001

 31

4) Common Portal Example

Middleware can be instrumental in implementing portals. Application integration services
may be an important part of the overall architecture that enables the commonwealth to
make steady progress towards creating a new citizen-centric, Internet-based government
service portal with high-priority applications that citizens want to access online. To
simplify portal use by citizens, common functions needed across agencies such as credit
card payment processing should be designed once and shared. Methods to verify and
authenticate users may also be developed once and shared. Middleware tools are
extremely useful in enabling the sharing process. A centrally available middleware tool
set can be shared across new development efforts.

The above examples illustrate the need for the last type of middleware, the super-services
middleware, which combine all of the above middleware tools and services into a
managed suite. Super-services are discussed in section E.

D.4 Application Integration Middleware Guidelines

Protocols and services related to application integration are noted in Table 6. Additional
commentary related to applying these protocols and services is provided below.

Those considering XML for RPC and SOAP are cautioned that they are emerging
technologies with specifications in draft or first versions but few implemented
applications. (XML for message formats is much more mature and strategic.) For more
information, see the World Wide Web Consortium (W3C) at http://www.w3.org .

Networks that employ TCP/IP can take advantage of IIOP compliant distributed objects.

New object-oriented business applications should be portable object adapter (POA)
compliant. POAs are written using IDL. POA standards replace Basic Object Adapter
(BOA) standards, which produced language specific adapters.

Table 6: Middleware Application Integration Services

Obsolescent Transitional Strategic Emerging

Object Request and Request Broker Protocols/Suites

 MS DCOM +, distributed common object model

OMG CORBA, common object request broker

J2EE/RMI, Java 2 Enterprise Edition (the
distributed version) and Remote Method
Invocation

GIOP, General Inter-ORB Protocol and IIOP,
Internet Inter-ORB Protocol (maps GIOP to
TCP)

POA, Portable Object Adapter

ebXML
(includes
SOAP, Object
Access
Protocol)

Middleware Architecture Version 1.0 Revision 5-18-2001

 32

Obsolescent Transitional Strategic Emerging

Enterprise Application Integration Services (EAI)

 Use of Integration Servers/Services Integration
Servers/
Services

Workflow Tools

 Workflow Tools

Remote Procedure Calls

 Suns' ONC+
RPC

DCE RPC

DCE secure RPC (integrated with DCE security
protocols for authentication, protection level and
authorization)

XML
synchronous
methods

SOAP

Object and Application Interfaces

 IDL (interface definition language) stubs; MIDL
(Microsoft); OMG IDL; DCE IDL

XML SOAP

. NET

DCOM/CORBA.RMI are all recommended strategic directions. Programming language
preferences may be an important influence in object model selection. ORB protocols are
still industry based and have interface limits.

E. Super-Service Middleware Servers and Services

Super-service middleware provides the management and integration of multiple
(heterogeneous) types of middleware with value added services. These super services are
often Web-enabling middleware that allow for the easy integration of back-end
applications with new e-commerce and e-government systems. Super-service middleware
enables rapid responses to changing business requirements.

Super-service middleware has value added services that may include a common look and
feel for APIs, common security and directory lookups, user friendly access to other
middleware, audit and logging services, packaging of adaptors, error recovery and
exception handling tools, data transformation tools, and mapping repository tools.

E.1 Value Added Services
1) Value Added: Common API / Simplified portability

Super service middleware can provide a common, simplified interface to call objects and
invoke application specific API’s. This simplifies training for the development team and
allows each programmer to call this common routine with a language they understand.

Middleware Architecture Version 1.0 Revision 5-18-2001

 33

2) Value Added: Common security and directory lookup

A common security and directory lookup can simplify maintenance of the various user
identifications and passwords that are needed to access each of the distributed systems
and databases. Logons can be mapped from one user identification to another user
identification using a password appropriate for the target system(s). A common directory
gives the distributed system a common place to find configuration information needed for
accessing and running the various middleware services.

3) Value Added: User-friendly access to other middleware

Some middleware is not user friendly. The interfaces provided may have the appearance
of terminal screens. Setup ease may vary drastically from tool to tool. Setup and
administration screens and procedures may be highly technical and difficult to
understand. Super-service middleware packages try to address some of these
inconsistencies and problems by providing well- integrated graphic user interfaces to each
of the components. The user-friendly front ends make the packaged tools and services
easier to configure, use, and administer.

4) Value Added: Integrated Audit and logging services

Super server middleware services can add some of the integrated control and
management to the distributed network that existed in the unified mainframe.

5) Value Added: Packaging of “connectors/adaptors” to standard business applications
and databases.

Super-service middleware adaptors can provide a quick start to those who are integrating
commonly used business applications into their environment. The more widely used an
application is, the more likely it is that the super-service middleware vendor has
incorporated adapters for that specific application. Yet another possibility is that if not
incorporated in the middleware, an application specific adapter may be available in the
marketplace such that it can be added to the adapters in the super-service middleware.

6) Value Added: Error recovery/exception handling (business rules on top of reliable
service request)

Super-service middleware may offer well- integrated services including event tracking,
transaction monitoring, etc. The super-service middleware may coordinate the use of
database middleware, messaging middleware, transaction processing monitors, and object
calls to handle exceptions and errors in a graceful and appropriate manner and in
accordance with flexible business rules.

7) Value Added: Preservation of legacy middleware and systems

By managing multiple middleware systems, a super service can extend and add value to
existing middleware products. The super service adds the management. The existing tool
does the work.

E.2 Super-Service Middleware Servers and Services Guidelines

1. Super service middleware should be shared or centralized across applications
within an agency, and if appropriate, across agencies that interoperate.

Middleware Architecture Version 1.0 Revision 5-18-2001

 34

2. Maximum reuse should be made of common routines to decrease programmer
costs.

3. Developers should buy rather than build interfaces.

4. Those writing middleware specification should investigate what super services
have done for other customers in a similar situation before finalizing
requirements. For a shared or common system, shared uses should be
investigated.

5. The Enterprise Architecture team in cooperation with the Department of
Technology planning should identify a project that could be used to evaluate a
super-service middleware product. The super-service product would be used to
provide necessary middleware services on a project that needs more than one
middleware service. The evaluation results could be incorporated into middleware
best practices.

VII. E-Government Examples
The following examples hypothetical e-government applications that are used to
demonstrate the mix of middleware types that may be applicable. Many compromises
need to be made when designing actual systems. The actual middleware needs of
Commonwealth applications in these areas may vary considerably from the examples
provided, given differences in scope, platforms, and actual requirements.

Table 7: Example Applications and Potential Middleware Use

A

pp
lic

at
io

n
Fu

nc
tio

ns

In
te

ra
ct

io
n

T
yp

e

E

xa
m

pl
es

D
at

ab
as

e

M
es

sa
ge

T
ra

ns
ac

tio
n

Pr
oc

es
si

ng

A
pp

lic
at

io
n

In
te

gr
at

io
n

Su
pe

r
Se

rv
ic

e
C2G Address Change X X X X
B2G Address Change X X X X
G2G Address Change X X X X

Administration

E2G Time Sheets X X X X

C2G Tax, License X X X X X
B2G Procurement X X X
G2G Accounting to Budget X X X X X

Finance

E2G Travel Vouchers X X X X X

C2G Courts Docketing X X X X X
B2G Employer Filings X X X X X

Legal

G2G Human Services
Coordination

X X X X X

C2G General Portal X
B2G Business Opportunity

Portal
X X

G2G Reports X X

Information

E2G Policies and Procedures X X

Middleware Architecture Version 1.0 Revision 5-18-2001

 35

The government examples are presented based on a framework of the following types of
interaction: customer to government (C2G), business to government (B2G), government
to government (G2G), and employee to government (E2G). Each of these areas is
examined from the perspective of the following major application functions:
administration, finance, legal, and information. The need for middleware in each of these
functions would vary greatly based on the scope of the function. For example, a travel
expense, employee-to-government function may not require use of a separate middleware
product if it were being done within one agency from an internal Intranet behind the
firewall, and the application did not require Web-enabling. However, if the application
were to be used by multiple agencies, or if it were to use an external portal, then more
systems could be affected, and more middleware types might be needed to bridge the
different platforms, systems, and data structures behind the scenes. The examples in
Table 7 demonstrate the considerable potential need for multiple types of middleware in
common government applications.

VIII. Policies, Standards and Best Practices
The Middleware domain team has developed several recommendations, which are
presented in this section as Policies, Standards, or Best Practices. If applicable, any
existing ITRM Policies, Standards, and Guidelines would also be listed. These
recommendations are not a summary of information already stated in the prior discussion
of middleware types. They specifically address how the Commonwealth agencies should
or might approach middleware architecture decisions.

Policies are high- level requirements for agencies and standards are detailed requirements.
The policies and standards provided below include existing policies and standards if
appropriate (e.g., ITRM Policies or Standards originally created by the Council on
Information Management, which is now the Department of Technology Planning). Also
included are recommendations of the domain team to continue and/or updated and
continued existing policies and standards. Recommended standards are recommendations
awaiting COTS approval. Best practices are intended as guidance. Best practices will
become part of guidelines for agencies that are not mandatory. Together, the
recommendations below constitute the domain team’s middleware advice to agencies.

Agencies should consider the following Recommended Standards and Best Practices
when designing and implementing middleware services or service enhancements.

A. Policies
No Current ITRM Policies address middleware related issues. An ITRM Policy is a
mandatory, high- level instruction to agencies such as “all state agencies must have a
security policy.”

B. Recommended Policies

No middleware policies are recommended by the domain team.

Middleware Architecture Version 1.0 Revision 5-18-2001

 36

C. Standards
No Current ITRM Standards address middleware related issues. An ITRM Standard is a
set of mandatory, detailed instruction to agencies such as “all agencies must adhere to
EIA/TIA building wiring standards”.

D. Recommended Standards
Recommended Standard 1. Directory Services. State Agencies must employ LDAP

compliant directory services. This will lay the groundwork for uniform
decentralized lists that can be aggregated centrally for use by the Commonwealth.

Recommended Standard 2. Email Protocols. State agency email messaging must be
SMTP and MIME compatible. Local governments are encouraged to follow this
standard as well.

E. Best Practices

Best Practice 1. Planning. Before acquiring a central middleware solution, agencies
should map their present middleware sources and uses, and should develop a plan
for migration to the central middleware or modifying present uses if needed.
Agencies should use middleware strategies that are scalable, extensible, and
maintainable.

Best Practice 2. Define Interfaces. Agencies should carefully define their interfaces
and business requirements.

Best Practice 3. Testing Middleware Modifications. Middleware tools and services
should be thoroughly tested. Consideration should be given to the need to
maintain a separate environment for testing modifications.

Best Practice 4. XML Documentation. As XML becomes more widely used in state
and local government, the Secretary of Technology should designate a responsible
agency for providing Web-based access to common tag definitions, DTDs, XML
Schemas and CSSs to promote consistent use of terms and to support reuse of
prior work whenever possible. Agencies using XML should participate and
monitor state and federal initiatives in their sphere for XML tag standards
development.

Best Practice 5. XML Storage. Agencies should only use XML for classifying data
content for message interfacing and presentation, not for long-term storage of
structured data.

Best Practice 6. XML/SOAP. Agencies considering XML and SOAP should
investigate the error detection, and auditing capabilities of their application.

Best Practice 7. Interfaces. Agencies should buy interfaces, not build them.

Best Practice 8. Strategic Investigation. The Commonwealth and its agencies
should carefully investigate the success other agencies and states have had in the

Middleware Architecture Version 1.0 Revision 5-18-2001

 37

deployment of middleware products before considering a separate middleware
acquisition.

Best Practice 9. Shared Resource. Agencies may wish to consider whether they
should acquire middleware as a shared resource across several agencies.

Best Practice 10. Logical Partitioning. Agencies should use middleware to support
logical partitioning and boundaries.

Best Practice 11. Open Interfaces. Agencies should use technologies that support
open interfaces, are persistent, and are non-proprietary whenever possible.

Best Practice 12. Efficiencies. Asynchronous messaging provides opportunities for
making efficient use of parallel processing capabilities in the network
environment.

Best Practice 13. Single Sign-on. Middleware can play an important role in enabling
a single sign-on for all applications and services.

Best Practice 14. Security and Directories. Agencies should consider implementing
separate directories for internal use and external (i.e., beyond the firewall) use.

Best Practice 15. Email. The Message Transfer Agent (MTA) in email applications
should be LDAP enabled.

Best Practice 16. LDAP Schema Coordination. Many universities use the
EDUCAUSE/Internet2 eduPerson task force effort as a vehicle for coordinating
directory standards for faculty and student access. The EDUCAUSE/Internet2
eduPerson task force has the mission of defining an LDAP object class that
includes widely used person attributes in higher education. The URL for the
Higher Education LDAP Schema work is: http://www.educause.edu/eduperson.
The Department of Technology planning should investigate the utility and
applicability of this work to government-wide person attributes.

Best Practice 17. Adapters. New object-oriented business applications should be
portable object adapter (POA) compliant.

Best Practice 18. The Enterprise Architecture team in cooperation with the
Department of Technology planning should identify a project that could be used
to evaluate a super-service middleware product. The super-service product would
be used to provide necessary middleware services on a project that needs more
than one middleware service. The evaluation results could be incorporated into
middleware best practices.

Middleware Architecture Version 1.0 Revision 5-18-2001

 38

Glossary
ACMS A transaction processing monitor from Compaq that runs on the open VMS operating system.

Active X Microsoft's answer to Java. ActiveX is a stripped down implementation of OLE designed to run
over slow Internet links.

ADSI Active Directory Service Interfaces (ADSI) abstract the capabilities of different directory services
from different network vendors to present a single set of directory service interfaces for managing network
resources

API Application Program Interface or Application Programming Interface.

APPC LU6.2 APPC allows user written programs to perform transactions in a Client-Server IBM network
to access a CICS, in MVS "batch" through APPC/MVS, in VM/CMS, in AIX on the RS/6000, and on the
AS/400

ASCII American Standard Code for Information Interchange. “ Human readable text.” The first 128
character codes of any of the ISO 8859 character sets is always identical to the ASCII character set

ASP Active Server Page (Microsoft) A scripting environment for Microsoft Internet Information Server in
which you can combine HTML, scripts and reusable ActiveX server components to create dynamic web
pages.

Asynchronous/connectionless communication A program-to-program communication model that does
not block any of the communicating partners and that allows for time independent interactions.

Authentication Verification a user is who they say they are.

B2G Business to government. Refers to a business process involving electronic interaction of business
partners.

BOA Basic Object Adapter protocol. Replaced by POA, portable object adapter.

C2G Customer to government. Refers to a business process involving electronic interaction of citizens
with government.

CA Certificate authority. A system for managing certified digital signatures. Manages the implementation
of policies to authenticate, authorize and revoke the assignment of keys to users.

CICS IBM mainframe application server that provides industrial-strength, online transaction management
for mission-critical applications. on MVS/ESA, OS/390, VSE/ESA and z/OS. Thirty years old but
repackaged to turn mainframes into Web servers.

CIM Virginia’s Council on Information Management. The forerunner of DTP, the Department of
Technology Planning. An agency of state government that supports information technology planning and
policy in government.

COM Component Object Model (Microsoft); also DCOM and DCOM+ for distributed systems

Cookies Information stored on a Website visitor’s computer regarding a transaction with a Website that
may be returned to that Website at each subsequent visit if requested by the Website.

CORBA Common Object Request Broker Architecture. OMG's open, vendor-independent architecture and
infrastructure that computer applications use to work together over networks.

Middleware Architecture Version 1.0 Revision 5-18-2001

 39

COTS Virginia’s Council on Technology Services. An advisory groups to the Secretary of Technology
that represents state and local government agencies and higher education.

CPI Common Program Interface. IBM’s Systems Application Architecture API.

CSS Cascading Style Sheets. An XML protocol used to control formatting of Web pages.

Data marshaling The conversion of data between platform specific representations and the packaging
according to the requirements of a particular network protocol in order to perform the data transport
between different nodes.

DCE Distributed Computing Environment from Open Computing Group. Includes Remote Procedure Call
(RPC), the Cell and Global Directory Services (CDS and GDS), the Security Service, DCE Threads,
Distributed Time Service (DTS), and Distributed File Service (DFS).

DCOM+ The Distributed Component Object Model. A set of Microsoft protocols that enable software
components to communicate directly over a network.

DNS Domain name system. A general-purpose, distributed, replicated, data query service chiefly used for
Internet communications for translating hostnames into IP addresses.

DTD Document Type Definition. An XML protocol for communicating tagging standards that will be
used in an XML communication. The definition of a document type in SGML or XML, consisting of a set
of mark-up tags and their interpretation.

DTP Department of Technology Planning. An agency of Virginia state government that supports
information technology planning and policy in government and supports the work of the Governor’s
Secretary of Technology.

E2G Employee to government. Refers to a business process involving electronic interaction of citizens
with government.

EAI Enterprise Application Integration. The use of middleware to integrate the application programs,
databases, and legacy systems involved in an organization's critical business processes.

EbXML ebXML is a set of specifications that together enable a modular electronic business framework.
The vision of ebXML is to enable a global electronic marketplace where enterprises of any size and in any
geographical location can meet and conduct business with each other through the exchange of XML based
messages. ebXML is a joint initiative of the United Nations (UN/CEFACT) and OASIS, developed with
global participation for global usage

EBCDIC Extended Binary Coded Decimal Interchange Code. IBM's 8-bit extension of the 4-bit Binary
Coded Decimal encoding of digits 0-9 (0000-1001).

EDI Electronic Data Interchange. EDI works by providing a collection of standard message formats and
element dictionary that can be used by businesses to exchange electronically. EDI is used for electronic
commerce. EDI interchanges use some variation of the ANSI X12 standard (USA) or EDIFACT (UN
sponsored global standard).

Emerging Rating category used in this document to rate middleware technologies. “The Virginia
Enterprise Architecture promotes only evaluative deployments of this technology. This technology may be
in development or may require evaluation in government and university settings. Use of this technology
may be high risk.”

ERwin A database design and optimization tool from Computer Associates.

ESMTP Extended SMTP. Initially defined in RFC 1869 and extended thereafter

EWTA Enterprise wide technical architecture.

Middleware Architecture Version 1.0 Revision 5-18-2001

 40

Extensible quality of a system that allows new features and functions to be added to it.

Firewall A dedicated gateway machine with special security precautions on it, used to service outside
network, especially Internet, connections and dial-in lines. The idea is to protect a cluster of more loosely
administered machines hidden behind it from crackers. The typical firewall is an inexpensive
microprocessor-based Unix machine with no critical data, with modems and public network ports on it, but
just one carefully watched connection back to the rest of the cluster. The special precautions may include
threat monitoring, call-back, and even a complete iron box keyable to particular incoming IDs or activity
patterns. Firewalls often run proxy gateways.

FTP File Transfer Protocol. A protocol used to transmit whole files over the Internet. Security with FTP.

G2C Government to Customer. Refers to a business process involving electronic interaction of government
with citizens.

GDS Global Directory Services, such as DNS and GDS (X.500), grew out of the computer industry's need
to reference objects in distributed networks across an entire enterprise and worldwide.

GIS Geographic Information System.

HTML HyperText Markup Language – A subset of SGML. A W3C standard for formatting Web pages.

HTTP Hypertext Transfer Protocol. The protocol used on the World-Wide Web for the exchange of
HTML documents. It conventionally uses port 80.

HTTP MPOST and HTTP POST “A SOAP request can use HTTP's POST verb. In fact, however, the
protocol requires that the first request to a server is made using M-POST. M-POST is a new HTTP verb
defined using the HTTP Extension Framework (http://www.w3.org/Protocols/HTTP/ietf-http-ext). If a
request made using M-POST fails, the client can try again using a standard POST request. (In this case,
future requests can also use POST because the server obviously doesn't support M-POST.) M-POST allows
sending HTTP headers that can't be sent via the standard POST verb, providing more flexibility for SOAP
users. Firewalls can even force the use of M-POST if desired, by simply refusing all HTTP POSTs with a
content type of "text/xml-SOAP".

Hypertext Hypertext is text that contains links to other text

IANA The central registry for various "assigned numbers": Internet Protocol parameters, such as port,
protocol, and enterprise numbers; and options, codes, and types. The currently assigned values are listed in
the "Assigned Numbers" document STD 2. To request a number assignment, e-mail <iana@isi.edu>.

IDL Interface Definition Language defined by OMG is a language for describing the interfaces of software
objects. Various Vendors have their own version of IDL (e.g., MIDL by Microsoft).

IETF Internet Engineering Taskforce. A standards group that works on Internet architectural issues.

IIOP Internet Inter-ORB Protocol. A protocol that defines a way for Remote Procedure vendor to map
messages to the TCP network communication protocol

IMAP stands for Internet Message Access Protocol. It permits a "client" email program to access remote
message stores as if they were local.

Interface repository The interface repository is part of object-oriented middleware. It contains the
definitions of all the services that objects can provide. The definitions form the contract by which a client
can invoke requests upon a server object.

IP Internet Protocol. A network addressing protocol. Two versions are defined: IPv4 and IPv6.

IP address An identifier for a computer or device on a TCP/IP network. Networks using the TCP/IP
protocol to route messages based on the IP address of the destination. The format of an IP address is a 32-

Middleware Architecture Version 1.0 Revision 5-18-2001

 41

bit numeric address written as four numbers separated by periods. Each number can be zero to 255. For
example, 1.160.10.240 could be an IP address. Within an isolated network, you can assign IP addresses at
random as long as each one is unique. However, connecting a private network to the Internet requires using
registered IP addresses (called Internet addresses) to avoid duplicates.

ISO International Standards Organization.

IT Information Technology

LDAP Lightweight Directory Access Protocol. A protocol for accessing on-line directory services. LDAP
was defined by the IETF to encourage adoption of X.500 directories. The Directory Access Protocol (DAP)
was seen as too complex for simple Internet clients to use. LDAP defines a relatively simple protocol for
updating and searching directories running over TCP/IP.

J2EE Java 2 Enterprise Edition. The distributed version of Sun’s Java platform. with Enterprise
JavaBeansTM (EJBTM), JavaServer PagesTM (JSPTM) and Java Servlet API component technologies.

Java portable language from Sun designed to run on any machine with a Java Virtual Machine interpreter.

JDAP Java Directory Access Protocol --an implementation of the Lightweight Directory Access Protocol.

JDOM Java document object model. A way to represent an XML document for easy and efficient reading,
manipulation, and writing.

JDBC Java Database Connectivity is a standard SQL database access interface. It comes with an ODBC
bridge.

Load balancing Load balancing means that requests from clients are distributed across available servers to
achieve better utilization of computing resources. In general, load balancing can be based on network
traffic, CPU load, relative power of the server, size of the server’s request queue, a simple round robin
method, or other mechanisms.

Loosely coupled Architectures based on publish/subscribe communications can provide a lightweight and
resilient foundation for applications that do not require tight coordination.

MAPI Messaging Application Programming Interface. A protocol used to write components that connect
to different mail servers, provide access to custom address books and provide rich storage facilities.

MDC Meta Data Coalition

Metadata (also Meta data) Data about data that makes the process of finding and using data easier

MIME Multipoint Internet Mail Extensions. An official Internet standard that specifies how messages must
be formatted so that they can be exchanged between different email systems.

MOM Message Oriented Middleware

Monolithic application is entirely installed on one machine.

MTA Message Transfer Agent. The internal component of an e-mail delivery system, responsible for mail
collection from and distribution to MUAs, and relay of mail between e-mail post offices. Also called e-mail
server.

MUA Mail User Agent—Primary entry and exit point for an e-mail system. Also called an e-mail client.

Multi-threaded Sharing a single CPU between multiple tasks (or "threads") in a way designed to minimize
the time required to switch threads.

Middleware Architecture Version 1.0 Revision 5-18-2001

 42

Naming service Naming service refers to the ability of application programs to locate application
components offered by other applications in a distributed environment. Typical naming service should
support registration of services in the naming service and their subsequent location through the naming
service.

NDS Netware Directory Services. A hierarchical, class-based directory structure for accessing network
resources.

NIST National Institute of Standards and Technology. Formerly, the National Bureau of Standards. A
United States governmental body that helps to develop standards.

N-tier A client-server architecture in which the user interface, functional process logic (the middle tier)
and data storage and access are developed and maintained as independent modules, most often on separate
platforms. If three-tiered, the middle tier is a single tier. If n-tiered, the middle tier is multi-tiered.

Obsolescent Rating category used in this document to rate middleware technologies. “The Virginia
Enterprise Architecture actively promotes that agencies employ a different technology. Agencies should not
plan new deployments of this technology. Agencies should develop a plan to replace this technology. This
technology may be waning in use or no longer supported. “

ODBC Open Data Base Connectivity. ODBC is based on Call-Level Interface and was defined by the SQL
Access Group. Microsoft was one member of the group and was the first company to release a commercial
product based on its work (under Microsoft Windows) but ODBC is not a Microsoft standard.

OLE- Object Linking and Embedding. The software capability that enables the creation a compound
document that contains one or more objects from one or more applications. Objects can be linked or
embedded in the compound document. Changes to linked objects are reflected in the source and vice versa.
Embedding objects breaks all links.

OLE-DB Microsoft's interface to data. OLE DB is an open specification designed to build on the success
of ODBC by providing an open standard for accessing all kinds of data.

OMG Object Management Group. A consortium aimed at setting standards in object-oriented
programming.

ONC+ RPC Open Network Computing (Sun) Remote Procedure Call. A remote procedure call or function
call protocol developed by Sun.

Open Group, The The Open Group is a standards development and product approval consortium. “The
Open Group's Mission is to offer all organizations concerned with open information infrastructures a forum
where we can share knowledge, integrate open initiatives, and certify approved products and processes in a
manner in which they continue to trust our impartiality.”

Open standards Standards that are available for all vendors to use in product development.

Open system A desirable but unachievable computing architecture state. A system built using open rather
than proprietary standards. A product based on widely implemented vendor-neutral standards.

ORB Object request Broker. A software tool that enables the location of and access to objects in a
distributed system.

OSI Reference Model Open Systems Interconnect seven layer model. A model of network architecture
and a suite of protocols (a protocol stack) to implement it, developed by ISO in 1978 as a framework for
international standards in heterogeneous computer network architecture. The OSI architecture is split
between seven layers, from lowest to highest: 1 physical layer, 2 data link layer, 3 network layer, 4
transport layer, 5 session layer, 6 presentation layer, 7 application layer. Each layer uses the layer
immediately below it and provides a service to the layer above. In some implementations, a layer may itself
be composed of sub-layers.

Middleware Architecture Version 1.0 Revision 5-18-2001

 43

POA Portable object adapter standard. An adapter written using IDL.

PDA Personal Digital Assistants

Persistence service Defines a service when an object state can be preserved in a persistent media such as
an object database.

PKI Public Key Infrastructure – a way to distribute security and encryption keys.

POP3 Post Office Protocol version 3. The most common protocol used by MUAs to retrieve mail from a
central message store (messaging server). Most commercial Internet Mail post office products include a
POP3 server. IMAP is typically a better choice than POP3 for unified messaging.

Portability 1) The ability to pick-up, store and delivery messages everywhere. 2) The ease with which a
piece of software (or file format) can be "ported", i.e. made to run on a new platform and/or compile with a
new compiler.

Protocol - A set of rules. For example, network protocols are rules that enable connectivity and
communication.

Publish & subscribe Providers of information can publish it for consumption by information consumers,
without any logical connection between the participating applications. 2) Software or protocols that enable
publishing and subscribing.

Quality of service 1) Reliable message delivery (no messages are lost in case of system failure).
2) Guaranteed message delivery (messages are delivered within a defined time limit, even in the case of
network or system unavailability). 3) Assured message delivery (messages are delivered at most once).

Repository A repository is a collection of resources that can be accessed to retrieve information.
Repositories often consist of several databases tied together by a common search engine.

Reusable component A sub-object derived from an object or a class of objects by taking advantage of
inheritance properties. The derived object inherits the instance variables and methods of the super class but
may add new instance variables and methods.

RMI Remote method invocation. A J2EE RPC.

RPC Remote Procedure Call—An external form of communication that allows a client to invoke a
procedure in a server.

Scalability The ability to expand as higher and higher volumes occur due to high volume operations with a
parallel engine.

SDK Software Developer’s Kit; Software Development Kit

SDLC Synchronous Data Link Control. An IBM/SNA communications protocol. HDLC, high level data
link control was derived using SDLC. SDLC manages synchronous (i.e., uses timing bit), code-transparent,
bit-serial communication which can be duplex or half-duplex; switched or non-switched; point-to-point,
multipoint, or loop.

Security service Compared to monolithic environments, distributed systems create new challenges for the
implementation of security. Middleware must provide authentication, auditing, authorization and
encryption services that allow a client to conduct a secure communication with a server.

SGML Standard Generalized markup Language. HTML and XML are subsets of SGML.

SMTP Simple Mail Transfer Protocol (SMTP), documented in RFC 821, is Internet's standard host-to-host
mail transport protocol.

Middleware Architecture Version 1.0 Revision 5-18-2001

 44

SNA IBM's Systems Networking Architecture (SNA) provides a structure for transferring data between a
variety of computing platforms.

SNMP Simple Network Management Protocol. The Internet standard protocol, defined in STD 15, RFC
1157, developed to manage nodes on an IP network.

SOAP Simple Access Object Protocol. A minimal set of conventions for invoking code using XML over
HTTP

Sockets- virtual connections between processes. They can be of two types, stream (bi-directional) or
datagram (fixed length destination-addressed messages). The socket library function socket() creates a
communications end-point or socket and returns a file descriptor with which to access that socket. The
socket has associated with it a socket address, consisting of a port number and the local host's network
address.

SQL Structured Query language. An industry-standard language for creating, updating and, querying
relational database management systems.

STDL Structured Transaction Definition Language. a high-level language for developing portable and
modular transaction processing applications in a multi-vendor environment.

Store and forward A term used in message processing where a message is saved and then delivered.

Support for standard management platforms Management of large-scale distributed application
environments requires appropriate tools. These tools should be based on standards (e.g. SNMP), so that the
management of applications can be integrated with popular management platforms like OpenView in order
to provide a consolidated picture of the state of network, operating system and application components.

Strategic Rating category used in this document to rate middleware technologies. “The Virginia Enterprise
Architecture promotes use of this technology by agencies. New deployments of this technology are
recommended.”

Synchronous/connection oriented communication The implementation of a request/reply model for
communication, i.e. the client program transfers data and control to the server with each call and it is
blocked until a reply is returned.

TCP/IP 1) Transmission Control Protocol over Internet Protocol. 2) The TCP/IP Suite of protocols.

Technical architecture In enterprise architecture, business and technical computing specifications are
considered. The technical architecture includes specification for only technical dimensions or components.
In Virginia’s enterprise architecture, the technical domains include: middleware, security, platform,
network, application, database, systems management, and information architecture.

TP Transaction Processing Monitor

Transaction service Guaranteed “all-or-nothing” execution of update requests against multiple
(heterogeneous) resources.

Transitional Rating category used in this document to rate middleware technologies. “The Virginia
Enterprise Architecture promotes other standard technologies. Agencies may be using this technology as a
transitional strategy in movement to a strategic technology. This technology may be waning in use or no
longer supported.”

Triggering Application components are dispatched automatically based on a predefined event condition.
The definition of the event concept varies between the different types of middleware, e.g. request for
certain elements in a database, arrival of a message in a queue, or method invocation request for an object
that is managed by a ORB.

Middleware Architecture Version 1.0 Revision 5-18-2001

 45

URL Uniform Resource Locator. An address, usually for locating Web pages. (E.g., FTP//: abc.org). The
part before the first colon specifies the access scheme or protocol. Commonly implemented schemes
include: ftp, http (World-Wide Web), gopher or WAIS. The "file" scheme should only be used to refer to a
file on the same host. Other less commonly used schemes include news, telnet or mailto (e-mail). The part
after the colon is interpreted according to the access scheme. In general, two slashes after the colon
introduce a hostname (host:port is also valid, or for FTP user:passwd@host or user@host). The port
number is usually omitted and defaults to the standard port for the scheme, e.g. port 80 for HTTP.

VIM Lotus/IBM CC:Mail.

X.400 International Telegraph and Telephone Consultative Committee (CCITT), now known as the ITU
Telecommunication Standardization Sector, completed the first release of the X.400 message handling
system standard. The standard provided for the exchange of messages in a store-and-forward manner
without regard to the user's location or computer system.

X.500 An ISO OSI Directory Service with an information model, a namespace, a functional model, an
authentication framework, and a distributed operation model. X.500 directory protocol is used for
communication between a Directory User Agent and a Directory System Agent. To allow heterogeneous
networks to share directory information, the ITU proposed a common structure called X.500. However, its
complexity and lack of seamless Internet support led to the development of Lightweight Directory Access
Protocol (LDAP), which has continued to evolve under the aegis of the IETF. Despite its name, LDAP is
too closely linked to X.500 to be "lightweight".

X.509 Standards for PKI or Public Key Infrastructure (e.g., Digital Signatures)

X/A an application program interface (API) specification between a global Transaction Manager and
Database.

XSL Extensible Stylesheet Language

XML Extensible Markup Language

XML Schema XML Schemas express shared vocabularies and allow machines to carry out rules made by
people. They provide a means for defining the structure, content and semantics of XML documents.

We would like to thank FOLDOC, the Free On-line Dictionary of Computing for being there for
references, links, and definitions. http://foldoc.doc.ic.ac.uk/foldoc/
Additionally, we used a variety of other highly recommended resources on the Internet including:
What Is? http://whatis.techtarget.com/
North Carolina ITS Glossary http://www.its.state.nc.us/Information/Glossary/GlossMain.asp
U. of Colorado Computing Standards with Links http://itp-
www.colorado.edu/~scig/std_glossary.html

Middleware Architecture Version 1.0 Revision 5-18-2001

 46

Appendices

Appendix A. History of the Evolution of Separate Middleware
Services

The term middleware is relatively new in the definition of computing architectures;
separate middleware has mushroomed as a result of the growth of multi-tiered
applications, multi-platform, distributed computing environments, and e-business. In the
more homogeneous mainframe computing environments of the 60’s, 70’s and 80’s,
programmers did not generally have to deal with the complexities of local and wide area
networking, logical partitioning of applications, or applications running on multiple
physical platforms. Less complex environments made communications simpler.
Programmers knew where data resided, used reports or terminal screens as the primary
user interface, issued simple function calls for remote processing, and employed simple
operating systems commands when necessary. They conducted most of their computing
work inside the controlled world of a unified mainframe or miniframe environment.

When local area networks (LANs) began to proliferate in the late 80’s and 90’s, two-
tiered client server applications became commonplace. The computing environments
were often characterized by fat client workstations interacting with a multifunctional
database servers, which had internal operating architectures that were much like the
mainframe—architectures that provided simple integrated solutions for most of the
communication needs between the client workstation and the database server over the
LAN. The database systems also provided the application languages, metadata stores,
internal middleware solutions, and other tools. Similar self-contained, stovepipe
applications for massive transaction processing remained on the mainframes. During this
period, mainframe applications were generally viewed as legacy systems that should be
converted to the new database system or replaced by shelf ware systems. Major enterprise
off-the-shelf systems (e.g., PeopleSoft and SAP R/3) sometimes used middleware
functions defined within a database environment or created their own built- in network
communications functionality. Programmers using the databases or shelf ware had to
learn new methods, but generally were still somewhat shielded from the network
communications and environmental complexities.

The two-tiered applications and client to database server communications quickly
evolved to three or more tiers when applications became Web-enabled and server farms
dotted the landscape. Internet connectivity, e-business, corporate mergers and buyouts,
and internationally distributed businesses began to define the heterogeneous mix of
application types, databases, application languages, and shared services in even more
complex, distributed networked environment. Databases, mainframes, and complex
applications were all providing redundant pieces of the communications between and
among applications and databases. The computing environments had no central controller
of all high- level communications. IT managers were faced with finding solutions that
would integrate the high- level communications in their increasingly heterogeneous
environments. Of extreme importance was simplifying the environment from the
viewpoint of programmers who had different middleware solutions with every

Middleware Architecture Version 1.0 Revision 5-18-2001

 47

application. The growth of Internet and e-business played a very significant role in
changing attitudes. One big change was that mainframe and legacy applications became
more accepted as a permanent part of the computing landscape. Another, perhaps more
important change was that a large proportion of existing systems potentially needed to
provide data and services to customers over the Internet. Many new interfaces were
needed.

Having to separately program so many new database and application interface in these
multi- tiered, distributed environments would have been a very wasteful approach. The
marketplace responded to the apparent coordination void by creating bundles of
middleware services. Sometimes the products were coupled with application functionality
aimed at specific business needs such as e-business. Transaction processing middleware
had been around for a long time. It migrated from mainframes to the client server world
and was often formed the base layer of the "messaging plus" middleware solutions. Some
bundled services were designed to help specific legacy systems to interface with non-
mainframe, networked applications. Some products specialized in communications
among disparate databases. Others focused on providing a comprehensive solution for
object-oriented services. Each provided some tools for building and accessing sharable
connectivity services.

Middleware super-services are a more recent phenomena in the marketplace. The super
services bundle a variety of middleware services from two or more vendors (e.g.,
transaction processing from one vendor and object brokering from another vendor) along
with additional environment management functionality into one product. Essentially,
some middleware providers are offering a suite of services that will envelop the high-
level communication needs of an entire distributed, multi-platform environment. Super
services try to return central control to interoperability and location transparency tasks by
providing all of the brokering, monitoring, metrics, protocols and communication
services needed in a particular computing environment. In offering these services,
middleware providers assumed that legacy systems would continue and multiple
standards would be in use (e.g., in a government setting, the mixed environment might be
within an agency or across several agencies with a common system). Other middleware
providers focus on the enterprise integration aspects (e.g., enterprise application
integration services (EAI), transaction processing, or Web enablement needs (e.g.,
comprehensive e-business solutions).

One important issue regarding acquiring middleware is that agencies must understand
that they may be making some serious architectural decisions in choosing product. Unless
agencies understand all of the underlying components and how they work together (or do
not), they will be unable to make architecturally sound decisions. The middleware
decisions made related to one application may seriously limit future options for providing
a comprehensive, coordinated approach to middleware services and functions. Agencies
need to know what all the pieces are and what they do. Agencies also need to know how
well coordinated the set up is, both from component to component and with the existing
architecture. Understanding middleware only from a use perspective (a programmer's
viewpoint) or only from a "problems addressed" perspective is not enough. The decision
makers must dig into the details to see the big picture.

Middleware Architecture Version 1.0 Revision 5-18-2001

 48

Appendix B. What Communication Services Are Middleware
Domain Service: The OSI and TCP/IP Models

Virginia's EWTA includes a Network Domain and a Middleware Domain. The Open
Systems Interconnect (OSI) reference model and the TCP/IP protocol stack provide
vehicles for explaining what network communications services are covered in the
Virginia's network domain and what communication services are covered in its
middleware or systems management domains. A particular middleware product may or
may not cover all of the services that are to be discussed here.

The OSI Model is a seven-layer model used to describe what may take place in a
particular network communication. (Note: not all communications require all seven
layers of functionality.) The network domain team and the middleware domain team have
mutually decided that functions in OSI reference layers 1-4 will be addressed primarily
by the network domain team and functions in layers 5-79, primarily by the middleware
domain team. A brief explanation will help.

Figure A provides a picture of client server communications using the OSI reference
model. Within a client server communication such as "the client mail application requests
'get new mail' from mail server application," the client performs steps 7 through 1, as
needed, to send the request and the server performs the same steps in reverse order to
receive the request. The original point of this division of communication tasks into layers
was so that one vendor could provide the functions of one layer and another vendor could
know how to interface with the neighboring layer and what tasks to perform at their layer.
The model will never be fully implemented, especially for layers 5-7. Never the less, the
model does provide a useful vehicle for drawing func tional lines in an enterprise
architecture.

A couple of points are important for understanding the role of middleware in Virginia's
architecture:

1. First, the Virginia's network domain architecture recommends a standard
interface between network layers and middleware layers. The interface protocols
are TCP/IP. Figure B demonstrates the differences between OSI and TCP/IP.

2. Second, OSI layers 5-7 tend to be implemented as functional stacks rather than as
layers. The TCP/IP stack shows only one layer above the transport layer. This is
a more accurate picture of how high- level communication functions are actually
implemented. Examples of integrated high- level functions are security functions
for digital signatures and email functions.

3. Third, there are exceptions to the division between Virginia's network and
middleware layer. These exceptions are most likely to surface when vendors are
providing a workaround for a proprietary protocol. The middleware solution may
use "tunneling" or hiding of one protocol inside another (layers 2 and 3) or may
employ a different transport protocol (layer 4).

9 In actuality, Virginia is recommending that the TCP/IP (5 layer) protocol stack be implemented as
network standard with directory services and security services following open protocols. Where
middleware is concerned, packetizing belongs to the network domain and higher functionality to the
middleware domain and the systems management domain.

Middleware Architecture Version 1.0 Revision 5-18-2001

 49

4. Fourth, some services performed by middleware products are not communication
functions, but are instead environment management and integration functions
such as providing a GUI interface for building the workflow components,
directory services, etc.

Figure A: OSI Seven Layer Model Showing a Communications Flow
Client Application

(E.g., Sender)

Server Application

(E.g., Receiver)

OSI 7 Application? OSI 7 Application ?

OSI 6 Presentation? OSI 6 Presentation........... ?

OSI 5 Session................? OSI 5 Session................ ?

standard interface Standard interface

OSI 4 Transport? OSI 4 Transport.............. ?

OSI 3 Network? OSI 3 Network............... ?

OSI 2 Data Link.............?

OSI 2 Data Link ?

OSI 1 Physical...............? Signal over medium? OSI 1 Physical............... ?

The Network Layers in Brief

The four OSI layers that define networking are as follows. Layer 1 is the specifications
for the physical layer (e.g., network wiring or other media). Note that the physical layer
could be copper or fiber or air (wireless) and still communicate with the data link layer,
which is layer 2. Ethernet methods of making sure that only one communication is taking
place at a time on the physical medium is an example of this layer. The 3rd layer is called
the network layer. One thing it deals with is protocols like IP addressing to locate a client
or a server when more than one network is involved. The 4th layer is the transport layer
and it uses protocols like TCP to packetize a communication and to ensure the packets
are transported properly. The important thing to note here is that network layers are rarely
used to provide business application related services. They move communications from
one place to another.

Figure B: OSI and TCP/IP views of Network Communications
OSI 7 Application (FTP, HTTP) OSI vs. TCP/IP Process (FTP, Telnet, RPC,

encryption, etc.)

OSI 6 Presentation (ASCII, XML, encryption)

OSI 5 Session (Sun RPC, DCE RPC, IIOP, RMI)

OSI 4 Transport (TCP, UDP)

Transport (TCP, UDP)

OSI 3 Network (IP) Network (IP)

OSI 2 Data Link (MAC address)

OSI 1 Physical (signaling, media)

Physical (MAC address,
signaling, media)

Middleware Architecture Version 1.0 Revision 5-18-2001

 50

The Middleware Layers in Brief

The middleware layers in the OSI model are called session (layer 5), presentation (layer
6), and application (layer 7). An example of a session service is providing a one-way
communication or tracking a two-way transmission. Presentation services include
encryption for security, language translations (e.g., from ASCII to EBCDIC), and
compression/decompression so that the application programs and operating systems will
understand the communication when it is received. The application layer is not the
business application program (e.g., email read and write program), but rather, the service
that knows when an application wants to communicate with the network (e.g., that the
email program is issuing a "file send" command).

What is important to note is that the middleware layers deal with business functionality
related to transmissions between network clients and servers (e.g., delivering email or
accepting an encrypted password to authorize access). The application program has to ask
for the middleware layer functionality but the programmer should not have to know how
it is provided. Good middleware products should shield the programmer from these
complex details.

Middleware Architecture Version 1.0 Revision 5-18-2001

 51

Appendix C. Domain Team Working Documents

Domain Technology and Business Trends

Middleware Domain Architecture is affected by the following technology and business
trends:

•XML is essential to middleware. This trend, in particular, requires a significant
amount of cooperation between and among entities to develop standards and
agreed-upon definitions. It also requires a great deal of flexibility between and
among entities.

•The increasing emphasis on portals for "one-stop shopping" or self-service over
the Web by business and the public. This is manifested in the continuous growth
of citizen access to services and information over the Web, as well as the
increased use of the Web for business-to-business and business-to-government
transactions.

•The tension that exists between the requirement that middleware must be both
simple and complex

•The assumption by end users that all systems can communicate.

•The heightened expectations about what middleware can accomplish.

•The unsettled environment in which middleware currently exists. For now, it is
one of the latest trends (i.e., buzzword) sweeping the computing industry.

•The limited resources that requires entities to employ legacy systems as long as
possible.

•The increasing emphasis on asynchronous communication.

The Enterprise Architecture Common Requirements Vision also identifies the following
technology trends that apply to the middleware domain:

TT01. Widespread Access to Internet by Citizens. The availability and acceptance of
moderately priced computers, coupled with rapid growth in ISP availability in
almost all locations, has led to an increasing number of citizens who use the
Internet. The emergence of Web-TV and similar devices holds the promise of
even greater Web access by the majority of citizens in the next few years.
Consequently, governments that Web-enable their services will be positioned to
meet the accessibility demands of their citizens. At the same time, governments

Middleware Architecture Version 1.0 Revision 5-18-2001

 52

must continue to recognize that not all citizens will have access to the Internet.
The requirement for other forms of government service delivery will continue.

TT02. Internet and Intranets as Dominant Communications Vehicles. The Internet
and Intranets have become the dominant communications vehicle for publishing
information and for conducting business in both the public and private sector.
This trend will make business solutions that are not compatible with the Internet
obsolete. “Internet only” solutions for delivering public services, however, will
not completely replace other service delivery mechanisms because many citizens,
who are most in need of government services, do not have Internet access.

TT03. Requirement for Secure Transactions Across the Network. As more
business-to-business and business-to-customer transactions are processed over
the Internet, there is a widespread realization that security is vital. Technologies
like encryption, Public Key Infrastructure (PKI) and digital signatures are
becoming increasingly viable and reflect the growing demand for absolute
authentication, privacy & access control. This growing demand for pervasive
security will drive rapid advances in security technologies and require significant
investment by the public sector in proven security systems.

TT04. Network Centric Computing. The need to share information and work
cooperatively, regardless of time and distance, is causing electronic document
handling, electronic commerce, automated workflow and collaborative
computing to continue to increase dramatically. Increased use of electronic work
processes will escalate the demand for network connectivity and communications
bandwidth. This trend elevates the importance of networks and makes them
critical factors in the success of business processes.

TT05. Electronic Commerce Expectation of Business Partners. Businesses are
discovering that electronic commerce is a viable and productive way to transact
business across supply chains. Many businesses now require their partners to
transact business electronically. Consequently, state and local governments,
which are not positioned to conduct electronic business, will find themselves and
their citizens at a significant, and potentially costly, disadvantage. The
Commonwealth E-Government initiative was created in response to this trend.

TT06. Emergence of Web Browser as Client of Choice. The Web browser has
become a common element on all workstations. Deployment of applications
using a Web browser as the client is widely acknowledged to be an efficient
choice. This approach mitigates problems inherent in client software distribution
and synchronization. Web browser enabled applications will become an
increasingly dominant method of delivering information, services, and software.

TT09.Enterprise Servers. Just a few years ago, conventional wisdom was that large
systems would soon be extinct, to be replaced by networks of small computers.
However, mainframe systems have rapidly evolved into enterprise servers with
almost unlimited scalability combined with robust management tools, open
protocol support, excellent security and high availability. An example is the
OS/390 Enterprise Server, which evolved from the monolithic MVS system.

Middleware Architecture Version 1.0 Revision 5-18-2001

 53

Improving price/performance ratios have resulted in enterprise servers becoming
the lowest total cost of ownership (TCO) option for many large applications and
shared systems. While no single technology choice is the right solution for all
needs, this trend will drive continued centralization of computing and data
storage resources, and make the central provision of applications as services
more attractive.

TT11. Convergence of Multi-Media Applications and Networks. Innovations in
technology are creating the opportunity to transmit voice, video and data over the
same network. For example, video is becoming a common element in many
applications. The broadcasting of video, interactive video conferencing, and
even conducting client interactions via video is proving to have significant
business value. This trend will continue to drive increasing bandwidth
requirements and shape both new applications and future networks.

TT13. Enterprise Portals. Large, complex organizations, like state government,
are increasingly moving away from a multiple Web site approach for providing
services to a “Web portal” strategy, which provides a single gateway to services
across the enterprise. Web portals are essentially Web sites that provide various
types of services in an integrated format. Often, users of a portal can create
personal profiles that allow customized views of the information and services
available. The use of portals at the enterprise level can benefit both service
providers, and the customer, through the leverage of investment in IT resources,
and having a single point of entry for all services provided by the enterprise.

TT14. Mobile Connectivity. The demand for mobile connectivity and
information access is increasing in response to increased use of laptop computers,
Personal Digital Assistants (PDA), Web-enabled cellular telephones and similar
devices. This demand will drive significant advances in wireless technology and
a corresponding need for applications that use next-generation mobile devices.

TT15. Increasing Use of Data Warehouse Technologies. The need to
accelerate decision-making causes organizations to place lines-of-business
operational data into data warehouses that provide enterprise-wide views of
information. Powerful graphical user interface (GUI) analysis tools in the hands
of decision-makers provide them with immediate access to critical information.
This type of processing is being referred to as on-line analytical processing
(OLAP) and requires database structures that allow dynamic definition of data
relationships. Consequently, large organizations will increasingly deploy data
warehousing technologies as separate but complementary to online transaction
processing (OLTP) systems.

TT17. Customized Service Delivery. As technology changes more rapidly, the
business requirements and expectations of users also change rapidly. Technology
solutions that are not designed for adaptability can quickly become obsolete, often
before they are fully implemented. This trend makes adaptability to change a
vital measure of the value of any proposed technology solution.

Middleware Architecture Version 1.0 Revision 5-18-2001

 54

TT18. Continued Growth of Online Transaction Processing Systems. There
continues to be very strong growth in high volume online transaction processing
(OLTP) systems, driven by the equally explosive growth of electronic business
activity. These systems often require large-scale processing and data storage,
with emphasis on fast transaction processing and positive commitment of
transactions in real time. This trend will continue to drive the demand for large
systems and high bandwidth networks.

TT19. Standardization of Desktop Workstations. The present standard
desktop is the Web-enabled computer with resident applications or client
software. Rapid advances in technology are requiring regular refresh of desktop
workstations. Costs of support for this desktop environment are increasing.
Initiatives such as Seat Management and thin client architectures are providing
cost effective solutions that bring current technology to the desktop. Enterprise
level implementation of standard desktop configurations, coupled with regular
technology refresh strategies, will increasingly be employed to gain technical and
economic advantage. (COTS Position: Standard desktop configurations are better
implemented at an individual organization, not enterprise, level.)

TT21. N-Tier Computing. The three-tier client server model proved difficult to
manage and expensive to implement and maintain. “N-tier” computing models
are rapidly replacing this model. N-tier implementations logically separate the
database, the application code, the presentation server and the client processing.
The number of physical systems involved can be two or more, with multiple parts
of the application residing on the same system in many cases. The client of
choice is the Web-enabled computer with no application software installation
required on the client other than plug- ins or helper apps that are downloaded as
needed through a Web browser. The result of this trend is the rapid obsolescence
of monolithic applications and older two and three-tier client server architectures.

Enterprise Business Strategies Supported

The Middleware Domain Architecture supports the following Enterprise Business
Strategies:

EBS06. Identify and Encourage Improved Service Delivery Mechanisms.

Improving government service to citizens is contingent upon improved
service delivery mechanisms. The Commonwealth must identify and
encourage the use, through appropriate incentives, of the most effective
and efficient service delivery mechanisms. As an example, government
services provided over the Internet may potentially provide better service
at reduced cost when compared to other possible service delivery
approaches.

Middleware Architecture Version 1.0 Revision 5-18-2001

 55

EBS09. Improve Procurement of Goods and Services. In order to address the
rapid changes in government service delivery demanded by the citizens of
the Commonwealth, the resources necessary to implement change must be
readily available. State government requires a procurement system that is
responsive to rapid change and focused on best value. Movement to an
automated procurement process that is fully integrated across state
government, while placing increased demands on current infrastructure,
will better enable technical innovation that supports improved service
delivery to the citizens of the Commonwealth.

EBS10. Insure IT Interoperability. The seamless delivery of government
services to the citizen implies both the vertical (within an organization)
and horizontal (across organizations) integration of informa tion. A
cornerstone of integrated information and service delivery is IT
interoperability. The Commonwealth must establish interoperability as a
prerequisite for the development of technical infrastructure.

EBS12. Promote Collaboration and Cooperative Systems Development. Many
organizations across state government are engaged in similar, and in some
cases identical, core business activities. Promoting cooperative systems
development provides the Commonwealth an excellent opportunity to
meet common business needs while simultaneously building integrated
technical architecture. Cooperative development strategies facilitate the
leveraging of resources across government boundaries and the deployment
of common service delivery mechanisms

Domain Requirements for Technical Architecture

Middleware Domain Architecture supports the following Requirements for Technical
Architecture:

RTA03 The Enterprise Architecture must provide mechanisms to determine and

adapt to the service delivery preferences of customers.

RTA04 The Enterprise Architecture must support implementation of multiple

service delivery channels for the same service utilizing common
underlying information and systems to enable rapid response to changes in
business requirements.

RTA05 The Enterprise Architecture must provide the capability to locate and

present information seamlessly based on the requestor’s needs and context
without requiring the requestor to know in advance the source or location
of the information.

RTA06 The Enterprise Architecture must support delivery of latest relevant

information.

Middleware Architecture Version 1.0 Revision 5-18-2001

 56

RTA09 The Enterprise Architecture must support mechanisms to detect and
resolve data discrepancies, incomplete data and incorrect data.

RTA12 The Enterprise Architecture must provide infrastructure that facilitates

collection, analysis and sharing of recruitment data, retention data, and
workforce availability information across all levels and branches of
government.

RTA13 The Enterprise Architecture must protect the confidentiality and integrity

of data being stored or transmitted.

RTA16 The Enterprise Architecture must enable flexible sharing of service

delivery channels to provide seamless customer service.

RTA19 The Enterprise Architecture must provide a flexible and scaleable

infrastructure to support rapid fluctuations in demand.

RTA22 The Enterprise Architecture must enable collection, analysis and sharing

of procurement performance information to support a well managed and
auditable procurement process.

RTA23 The Enterprise Architecture must support flexible implementation based

on industry standards consistent with mainstream trends.

RTA24 The Enterprise Architecture must support multiple sets of standards to

ensure interoperability.

RTA27 The Enterprise Architecture must enable deployment of common

applications in both centralized and decentralized implementations as
appropriate.

RTA28 The Enterprise Architecture must facilitate implementation of a high

capacity and high availability technology infrastructure in all parts of the
Commonwealth, in cooperation with business and industry that will attract
businesses to the Commonwealth and promote widespread economic
growth.

RTA29 The Enterprise Architecture must enable strategic prototyping of new

technologies and rapid deployment of technologies and service delivery
mechanisms determined to be effective, stable, and appropriate.

Middleware Architecture Version 1.0 Revision 5-18-2001

 57

Appendix D. Reference and Links

State Sites:

Connecticut Middleware Domain Architecture
http://www.doit.state.ct.us/policy/mdlware.pdf

North Carolina Application Middleware Architecture:
http://irm.state.nc.us/techarch/chaps/pdffiles/chap6.pdf

Ohio Middleware Infrastructure Architecture:
http://www.state.oh.us/das/dcs/opp/pdfs_other/MidwareReq.pdf

Federal Links:

Links: Federal Information Technology Architecture
http://www.itpolicy.gsa.gov/mke/archplus/federal.htm

General Middleware References

GartnerGroup:

Application Integration Middleware Market, R-11-5113, 1-September 2000

Middleware: The Glue for Modern Applications, R-08-2601, 26 July 1999

Middleware Deployment Trends: Survey of Real-World Enterprise Applications, R-
07-4976, 2 April 1999

META Group:

X-EAI Standards: Part1-Waiting for Esperanto or Dealing with the Tower of Babel?
File: 779 28 September 1999

Open Computing is Dead – Long Live Open Computing. File: 780, 28 September
1999

Host Data-Sharing Framework: Part1-Overview. File 768, 2 August 1999

The Challenge of Adaptive EAI Infrastructures. File 762, 28 July 1999

Microsoft.Net: Too Important to Ignore! File 865, 21 September 2000

From Application Server to Application Integrator: Building the Application Services
Layer. File 774, 13 September 1999

Other Sources:

Middleware Vendor Database: Middleware Spectra, an independent resource on
business integration and network computing through middleware and message
brokering.
http://www.middlewarespectra.com/abstracts/vendordb.htm

Issue No. 12 of "The Enterprise Newsletter" (TEN), published by Clive Finkelstein.
http://members.ozemail.com.au/~ieinfo/ten12.htm

Enterprise Wide Information Technology Architecture (EWITA) links and resources
http://www.ewita.com/

Middleware Architecture Version 1.0 Revision 5-18-2001

 58

The Once and Future System: The Emergence of Middleware. By Colin Currie
http://www.bcsolutionsmag.com/Archives2/march99/Middleware.html

Advanced middleware services by G. Schussel
http://news.dci.com/geos/csglue.htm

Middleware - The Essential Component for Enterprise Client/Server Applications.
http://www.isg-inc.com/goodies.htm prepared by International Systems Group, Inc.

Special Topics

XML and SOAP

XML Database Products, by Robert Bourret
http://www.rpbourret.com/xml/XMLDatabaseProds.htm

XML Overview
http://www.w3.org/XML/1999/XML-in-10-points

A Busy Developer's Guide to SOAP 1.1. By Dave Winer and Jake Savin (UserLand
Software). March 28, 2001.

http://www.xmlrpc.com/aBusyDevelopersGuideToSoap11

SOAP won't clean middleware's messy reality, By James Kobielus, Network World,
05/22/2000
http://www.nwfusion.com/columnists/2000/0522kobielus.html

Object Models

Cataloging CORBA's Problems: A Short List
http://www.chappellassoc.com/artcorba.htm

Comparison of DCOM/COM and CORBA
http://www.quoininc.com/quoininc/COM_CORBA.html

Comparison of CORBA, COM/DCOM and Java/RMI
http://www.execpc.com/~gopalan/misc/compare.html

E-Business

High-Performance Technologies for the Second Wave of E-Business. By Tony
Rybczynski
http://www.wsta.org/publications/articles/1000_article04.html

Middleware Architecture Version 1.0 Revision 5-18-2001

 59

Appendix E: Quick Reference

 Scope Strategic Issues Applications/
Services

Protocol/ Standard
Examples

Database
Middleware

Communication w/ 1or
more local/remote
database servers.

Does not transfer calls or
objects.

• DB directory
services

Database of lists Involved distributed architecture
or middleware strategy

Interoperability, location
transparency, lower
maintenance costs

Email, security,
naming services

LDAP, X500, DNS,
GDS

• DB Metadata
services

Data about data,
descriptive data to help
make sense of data

Descriptions of data, how used,
who uses, what constraints there
are, where it originated

Policies required for it use

Dependent on
applications

Joint metadata model
(OMG/MDC), XML
containers

• DB access
services

Connectors from
application to Database

Dependent on applications
services used

ODBC

Database
Gateways/
Adapters

ODBC, JDBC, SQL,
OLE-DB

Message

Middleware

Message-oriented
middleware provide an
interface between
applications

• Message formats Requests/replies from
applications and
databases

Format not important

ASCII format evolving

XML data content strategic

 XML primarily

• Message transfers File copy, emulation,
translation, file transfer,
hypertext

Decision on application need
(simple to complex)

Various file copy,
emulation and
transfer methods.

FTP, or general transfer.
Proprietary and open
methods. HTTP.

• Message-oriented
middleware

Manage message
distribution, receipt
confirmation, error
handling of messages

Store-and-forward messaging

Publish/subscribe

Event registry svcs

Intelligent routing

 No defined protocols due
to encouragment of
proprietary and open
standardized message
formats

• Message
middleware
guidelines

Synchronous, Deferred,
one-way and
asynchronous

Guidelines as defined by
practice

 ASCII,EDI,XML

Middleware Architecture Version 1.0 Revision 5-18-2001

 60

 Scope Strategic Issues Applications/
Services

Protocol/ Standard
Examples

Transaction
Processing
Middle ware

Ensures transaction
integrity for distributed
transaction environments

• Transaction
middleware types

Two-phase commits

Failure/recovery

Synchronized systems

Scheduling

Selection based on need and
infrastructure

 No specific controlling
protocols

• Transaction
middleware
guidelines

Requirement of only if
environment needs
transactional integrity

 X/A as standard.

Application
Integration
Middleware

Providing interfaces to
applications from thin
client to full integrated
user interface

• Methods to
integrate
applications

Application
Programming Interfaces,
Remote Procedure Calls,

Object Interfaces, Object
Request Brokers, Simple
Open Access Protocol

Observe differences that may
require interoperability and
application redesign

 Various API’s, RPC
implementation
standards by developer,
COM/COM+/DNA,

ORBs by developer,
CORBA.

• Application
Integration
Management
Services

Conversion services,
legacy wrapper for
client-host access, data
mapping and triggers

Selection based on need and
access to local, legacy or other
data requiring specific
interconnection and
interoperability needs

 Services and methods of
implementation differ by
developer

• Application
Integration
Middleware
Examples

Examples that provide
context to using
application integration
middleware

Address the work to expedite
distributed, non-distributed
business processes in real-
business needs

 None.

• Application
Integration
Middleware
Guidelines

 Strategic and emerging trends
for implementations

 XML for RPC, SOAP,
TCP/IP, IIOP, Portable
Object Adapter, DCOM/
COBRA/RMI

Super-service
Middleware

Includes the collection,
management and
integration of multiple
types of middleware

• Value-added
services

All value-added services
for super-service
middleware

Determination of strategy for
using value-added service under
super-service

• Super-service
guidelines

Guidelines for
procurement and
utilization of such
services

Centralization, maximum reuse,
purchase – do not buy, research
super-services that serve your
customer’s needs

